Solve for x
x=-2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
x^{2}+x+\frac{1}{4}-\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{2}\right)^{2}.
x^{2}+x+\frac{1}{4}-\left(\frac{1}{4}-x^{2}\right)=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Consider \left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
x^{2}+x+\frac{1}{4}-\frac{1}{4}+x^{2}=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
To find the opposite of \frac{1}{4}-x^{2}, find the opposite of each term.
x^{2}+x+x^{2}=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
2x^{2}+x=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+x=x^{2}+\frac{1}{2}x-3+6
Use the distributive property to multiply x-\frac{3}{2} by x+2 and combine like terms.
2x^{2}+x=x^{2}+\frac{1}{2}x+3
Add -3 and 6 to get 3.
2x^{2}+x-x^{2}=\frac{1}{2}x+3
Subtract x^{2} from both sides.
x^{2}+x=\frac{1}{2}x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+x-\frac{1}{2}x=3
Subtract \frac{1}{2}x from both sides.
x^{2}+\frac{1}{2}x=3
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
x^{2}+\frac{1}{2}x-3=0
Subtract 3 from both sides.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-3\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{1}{2} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-3\right)}}{2}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+12}}{2}
Multiply -4 times -3.
x=\frac{-\frac{1}{2}±\sqrt{\frac{49}{4}}}{2}
Add \frac{1}{4} to 12.
x=\frac{-\frac{1}{2}±\frac{7}{2}}{2}
Take the square root of \frac{49}{4}.
x=\frac{3}{2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{7}{2}}{2} when ± is plus. Add -\frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{4}{2}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{7}{2}}{2} when ± is minus. Subtract \frac{7}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide -4 by 2.
x=\frac{3}{2} x=-2
The equation is now solved.
x^{2}+x+\frac{1}{4}-\left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right)=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{2}\right)^{2}.
x^{2}+x+\frac{1}{4}-\left(\frac{1}{4}-x^{2}\right)=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Consider \left(\frac{1}{2}-x\right)\left(\frac{1}{2}+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{2}.
x^{2}+x+\frac{1}{4}-\frac{1}{4}+x^{2}=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
To find the opposite of \frac{1}{4}-x^{2}, find the opposite of each term.
x^{2}+x+x^{2}=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
2x^{2}+x=\left(x-\frac{3}{2}\right)\left(x+2\right)+6
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+x=x^{2}+\frac{1}{2}x-3+6
Use the distributive property to multiply x-\frac{3}{2} by x+2 and combine like terms.
2x^{2}+x=x^{2}+\frac{1}{2}x+3
Add -3 and 6 to get 3.
2x^{2}+x-x^{2}=\frac{1}{2}x+3
Subtract x^{2} from both sides.
x^{2}+x=\frac{1}{2}x+3
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}+x-\frac{1}{2}x=3
Subtract \frac{1}{2}x from both sides.
x^{2}+\frac{1}{2}x=3
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{7}{4} x+\frac{1}{4}=-\frac{7}{4}
Simplify.
x=\frac{3}{2} x=-2
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}