Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

v^{3}w^{-1}\times \frac{\left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}}
To raise \frac{3u^{-4}v}{w^{-3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{v^{3}\times \left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}}w^{-1}
Express v^{3}\times \frac{\left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}} as a single fraction.
\frac{v^{3}\times \left(3u^{-4}v\right)^{3}}{w^{-9}}w^{-1}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{v^{3}\times 3^{3}\left(u^{-4}\right)^{3}v^{3}}{w^{-9}}w^{-1}
Expand \left(3u^{-4}v\right)^{3}.
\frac{v^{3}\times 3^{3}u^{-12}v^{3}}{w^{-9}}w^{-1}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{v^{3}\times 27u^{-12}v^{3}}{w^{-9}}w^{-1}
Calculate 3 to the power of 3 and get 27.
\frac{v^{6}\times 27u^{-12}}{w^{-9}}w^{-1}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{v^{6}\times 27u^{-12}w^{-1}}{w^{-9}}
Express \frac{v^{6}\times 27u^{-12}}{w^{-9}}w^{-1} as a single fraction.
27u^{-12}v^{6}w^{8}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
v^{3}w^{-1}\times \frac{\left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}}
To raise \frac{3u^{-4}v}{w^{-3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{v^{3}\times \left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}}w^{-1}
Express v^{3}\times \frac{\left(3u^{-4}v\right)^{3}}{\left(w^{-3}\right)^{3}} as a single fraction.
\frac{v^{3}\times \left(3u^{-4}v\right)^{3}}{w^{-9}}w^{-1}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{v^{3}\times 3^{3}\left(u^{-4}\right)^{3}v^{3}}{w^{-9}}w^{-1}
Expand \left(3u^{-4}v\right)^{3}.
\frac{v^{3}\times 3^{3}u^{-12}v^{3}}{w^{-9}}w^{-1}
To raise a power to another power, multiply the exponents. Multiply -4 and 3 to get -12.
\frac{v^{3}\times 27u^{-12}v^{3}}{w^{-9}}w^{-1}
Calculate 3 to the power of 3 and get 27.
\frac{v^{6}\times 27u^{-12}}{w^{-9}}w^{-1}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{v^{6}\times 27u^{-12}w^{-1}}{w^{-9}}
Express \frac{v^{6}\times 27u^{-12}}{w^{-9}}w^{-1} as a single fraction.
27u^{-12}v^{6}w^{8}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.