Solve for t
t = \frac{\sqrt{1097} + 29}{32} \approx 1.941280948
t=\frac{29-\sqrt{1097}}{32}\approx -0.128780948
Share
Copied to clipboard
t-4=30t-16t^{2}
Subtract 4 from both sides.
t-4-30t=-16t^{2}
Subtract 30t from both sides.
-29t-4=-16t^{2}
Combine t and -30t to get -29t.
-29t-4+16t^{2}=0
Add 16t^{2} to both sides.
16t^{2}-29t-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\times 16\left(-4\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -29 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-29\right)±\sqrt{841-4\times 16\left(-4\right)}}{2\times 16}
Square -29.
t=\frac{-\left(-29\right)±\sqrt{841-64\left(-4\right)}}{2\times 16}
Multiply -4 times 16.
t=\frac{-\left(-29\right)±\sqrt{841+256}}{2\times 16}
Multiply -64 times -4.
t=\frac{-\left(-29\right)±\sqrt{1097}}{2\times 16}
Add 841 to 256.
t=\frac{29±\sqrt{1097}}{2\times 16}
The opposite of -29 is 29.
t=\frac{29±\sqrt{1097}}{32}
Multiply 2 times 16.
t=\frac{\sqrt{1097}+29}{32}
Now solve the equation t=\frac{29±\sqrt{1097}}{32} when ± is plus. Add 29 to \sqrt{1097}.
t=\frac{29-\sqrt{1097}}{32}
Now solve the equation t=\frac{29±\sqrt{1097}}{32} when ± is minus. Subtract \sqrt{1097} from 29.
t=\frac{\sqrt{1097}+29}{32} t=\frac{29-\sqrt{1097}}{32}
The equation is now solved.
t-30t=4-16t^{2}
Subtract 30t from both sides.
-29t=4-16t^{2}
Combine t and -30t to get -29t.
-29t+16t^{2}=4
Add 16t^{2} to both sides.
16t^{2}-29t=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16t^{2}-29t}{16}=\frac{4}{16}
Divide both sides by 16.
t^{2}-\frac{29}{16}t=\frac{4}{16}
Dividing by 16 undoes the multiplication by 16.
t^{2}-\frac{29}{16}t=\frac{1}{4}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{29}{16}t+\left(-\frac{29}{32}\right)^{2}=\frac{1}{4}+\left(-\frac{29}{32}\right)^{2}
Divide -\frac{29}{16}, the coefficient of the x term, by 2 to get -\frac{29}{32}. Then add the square of -\frac{29}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{29}{16}t+\frac{841}{1024}=\frac{1}{4}+\frac{841}{1024}
Square -\frac{29}{32} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{29}{16}t+\frac{841}{1024}=\frac{1097}{1024}
Add \frac{1}{4} to \frac{841}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{29}{32}\right)^{2}=\frac{1097}{1024}
Factor t^{2}-\frac{29}{16}t+\frac{841}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{29}{32}\right)^{2}}=\sqrt{\frac{1097}{1024}}
Take the square root of both sides of the equation.
t-\frac{29}{32}=\frac{\sqrt{1097}}{32} t-\frac{29}{32}=-\frac{\sqrt{1097}}{32}
Simplify.
t=\frac{\sqrt{1097}+29}{32} t=\frac{29-\sqrt{1097}}{32}
Add \frac{29}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}