Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

6t^{2}+3-4t-7
Combine t^{2} and 5t^{2} to get 6t^{2}.
6t^{2}-4-4t
Subtract 7 from 3 to get -4.
factor(6t^{2}+3-4t-7)
Combine t^{2} and 5t^{2} to get 6t^{2}.
factor(6t^{2}-4-4t)
Subtract 7 from 3 to get -4.
6t^{2}-4t-4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-4\right)±\sqrt{16-4\times 6\left(-4\right)}}{2\times 6}
Square -4.
t=\frac{-\left(-4\right)±\sqrt{16-24\left(-4\right)}}{2\times 6}
Multiply -4 times 6.
t=\frac{-\left(-4\right)±\sqrt{16+96}}{2\times 6}
Multiply -24 times -4.
t=\frac{-\left(-4\right)±\sqrt{112}}{2\times 6}
Add 16 to 96.
t=\frac{-\left(-4\right)±4\sqrt{7}}{2\times 6}
Take the square root of 112.
t=\frac{4±4\sqrt{7}}{2\times 6}
The opposite of -4 is 4.
t=\frac{4±4\sqrt{7}}{12}
Multiply 2 times 6.
t=\frac{4\sqrt{7}+4}{12}
Now solve the equation t=\frac{4±4\sqrt{7}}{12} when ± is plus. Add 4 to 4\sqrt{7}.
t=\frac{\sqrt{7}+1}{3}
Divide 4+4\sqrt{7} by 12.
t=\frac{4-4\sqrt{7}}{12}
Now solve the equation t=\frac{4±4\sqrt{7}}{12} when ± is minus. Subtract 4\sqrt{7} from 4.
t=\frac{1-\sqrt{7}}{3}
Divide 4-4\sqrt{7} by 12.
6t^{2}-4t-4=6\left(t-\frac{\sqrt{7}+1}{3}\right)\left(t-\frac{1-\sqrt{7}}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{7}}{3} for x_{1} and \frac{1-\sqrt{7}}{3} for x_{2}.