Evaluate
\left(s+1\right)^{2}-j_{3}^{2}
Expand
s^{2}+2s-j_{3}^{2}+1
Share
Copied to clipboard
s^{2}+s-sj_{3}+s+1-j_{3}+j_{3}s+j_{3}-j_{3}^{2}
Apply the distributive property by multiplying each term of s+1+j_{3} by each term of s+1-j_{3}.
s^{2}+2s-sj_{3}+1-j_{3}+j_{3}s+j_{3}-j_{3}^{2}
Combine s and s to get 2s.
s^{2}+2s+1-j_{3}+j_{3}-j_{3}^{2}
Combine -sj_{3} and j_{3}s to get 0.
s^{2}+2s+1-j_{3}^{2}
Combine -j_{3} and j_{3} to get 0.
s^{2}+s-sj_{3}+s+1-j_{3}+j_{3}s+j_{3}-j_{3}^{2}
Apply the distributive property by multiplying each term of s+1+j_{3} by each term of s+1-j_{3}.
s^{2}+2s-sj_{3}+1-j_{3}+j_{3}s+j_{3}-j_{3}^{2}
Combine s and s to get 2s.
s^{2}+2s+1-j_{3}+j_{3}-j_{3}^{2}
Combine -sj_{3} and j_{3}s to get 0.
s^{2}+2s+1-j_{3}^{2}
Combine -j_{3} and j_{3} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}