Solve for x
x=-\frac{2\left(19-2r\right)}{5\left(3-r\right)}
r\neq 3
Solve for r
r=\frac{15x+38}{5x+4}
x\neq -\frac{4}{5}
Share
Copied to clipboard
r\left(5x+4\right)=27-1+\left(5x+4\right)\times 3
Variable x cannot be equal to -\frac{4}{5} since division by zero is not defined. Multiply both sides of the equation by 5x+4.
5rx+4r=27-1+\left(5x+4\right)\times 3
Use the distributive property to multiply r by 5x+4.
5rx+4r=26+\left(5x+4\right)\times 3
Subtract 1 from 27 to get 26.
5rx+4r=26+15x+12
Use the distributive property to multiply 5x+4 by 3.
5rx+4r=38+15x
Add 26 and 12 to get 38.
5rx+4r-15x=38
Subtract 15x from both sides.
5rx-15x=38-4r
Subtract 4r from both sides.
\left(5r-15\right)x=38-4r
Combine all terms containing x.
\frac{\left(5r-15\right)x}{5r-15}=\frac{38-4r}{5r-15}
Divide both sides by 5r-15.
x=\frac{38-4r}{5r-15}
Dividing by 5r-15 undoes the multiplication by 5r-15.
x=\frac{2\left(19-2r\right)}{5\left(r-3\right)}
Divide 38-4r by 5r-15.
x=\frac{2\left(19-2r\right)}{5\left(r-3\right)}\text{, }x\neq -\frac{4}{5}
Variable x cannot be equal to -\frac{4}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}