Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}+10r+25=2r^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}+10r+25-2r^{2}=0
Subtract 2r^{2} from both sides.
-r^{2}+10r+25=0
Combine r^{2} and -2r^{2} to get -r^{2}.
r=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\times 25}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{-10±\sqrt{100-4\left(-1\right)\times 25}}{2\left(-1\right)}
Square 10.
r=\frac{-10±\sqrt{100+4\times 25}}{2\left(-1\right)}
Multiply -4 times -1.
r=\frac{-10±\sqrt{100+100}}{2\left(-1\right)}
Multiply 4 times 25.
r=\frac{-10±\sqrt{200}}{2\left(-1\right)}
Add 100 to 100.
r=\frac{-10±10\sqrt{2}}{2\left(-1\right)}
Take the square root of 200.
r=\frac{-10±10\sqrt{2}}{-2}
Multiply 2 times -1.
r=\frac{10\sqrt{2}-10}{-2}
Now solve the equation r=\frac{-10±10\sqrt{2}}{-2} when ± is plus. Add -10 to 10\sqrt{2}.
r=5-5\sqrt{2}
Divide -10+10\sqrt{2} by -2.
r=\frac{-10\sqrt{2}-10}{-2}
Now solve the equation r=\frac{-10±10\sqrt{2}}{-2} when ± is minus. Subtract 10\sqrt{2} from -10.
r=5\sqrt{2}+5
Divide -10-10\sqrt{2} by -2.
r=5-5\sqrt{2} r=5\sqrt{2}+5
The equation is now solved.
r^{2}+10r+25=2r^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+5\right)^{2}.
r^{2}+10r+25-2r^{2}=0
Subtract 2r^{2} from both sides.
-r^{2}+10r+25=0
Combine r^{2} and -2r^{2} to get -r^{2}.
-r^{2}+10r=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
\frac{-r^{2}+10r}{-1}=-\frac{25}{-1}
Divide both sides by -1.
r^{2}+\frac{10}{-1}r=-\frac{25}{-1}
Dividing by -1 undoes the multiplication by -1.
r^{2}-10r=-\frac{25}{-1}
Divide 10 by -1.
r^{2}-10r=25
Divide -25 by -1.
r^{2}-10r+\left(-5\right)^{2}=25+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
r^{2}-10r+25=25+25
Square -5.
r^{2}-10r+25=50
Add 25 to 25.
\left(r-5\right)^{2}=50
Factor r^{2}-10r+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(r-5\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
r-5=5\sqrt{2} r-5=-5\sqrt{2}
Simplify.
r=5\sqrt{2}+5 r=5-5\sqrt{2}
Add 5 to both sides of the equation.