Solve for p
p=-5
p=9
Share
Copied to clipboard
p^{2}-4p-21=24
Use the distributive property to multiply p-7 by p+3 and combine like terms.
p^{2}-4p-21-24=0
Subtract 24 from both sides.
p^{2}-4p-45=0
Subtract 24 from -21 to get -45.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-45\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-4\right)±\sqrt{16-4\left(-45\right)}}{2}
Square -4.
p=\frac{-\left(-4\right)±\sqrt{16+180}}{2}
Multiply -4 times -45.
p=\frac{-\left(-4\right)±\sqrt{196}}{2}
Add 16 to 180.
p=\frac{-\left(-4\right)±14}{2}
Take the square root of 196.
p=\frac{4±14}{2}
The opposite of -4 is 4.
p=\frac{18}{2}
Now solve the equation p=\frac{4±14}{2} when ± is plus. Add 4 to 14.
p=9
Divide 18 by 2.
p=-\frac{10}{2}
Now solve the equation p=\frac{4±14}{2} when ± is minus. Subtract 14 from 4.
p=-5
Divide -10 by 2.
p=9 p=-5
The equation is now solved.
p^{2}-4p-21=24
Use the distributive property to multiply p-7 by p+3 and combine like terms.
p^{2}-4p=24+21
Add 21 to both sides.
p^{2}-4p=45
Add 24 and 21 to get 45.
p^{2}-4p+\left(-2\right)^{2}=45+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-4p+4=45+4
Square -2.
p^{2}-4p+4=49
Add 45 to 4.
\left(p-2\right)^{2}=49
Factor p^{2}-4p+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-2\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
p-2=7 p-2=-7
Simplify.
p=9 p=-5
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}