Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

p^{2}-4p+4-\left(p-3\right)^{2}+\left(p-4\right)\left(p+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-2\right)^{2}.
p^{2}-4p+4-\left(p^{2}-6p+9\right)+\left(p-4\right)\left(p+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-3\right)^{2}.
p^{2}-4p+4-p^{2}+6p-9+\left(p-4\right)\left(p+4\right)
To find the opposite of p^{2}-6p+9, find the opposite of each term.
-4p+4+6p-9+\left(p-4\right)\left(p+4\right)
Combine p^{2} and -p^{2} to get 0.
2p+4-9+\left(p-4\right)\left(p+4\right)
Combine -4p and 6p to get 2p.
2p-5+\left(p-4\right)\left(p+4\right)
Subtract 9 from 4 to get -5.
2p-5+p^{2}-16
Consider \left(p-4\right)\left(p+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
2p-21+p^{2}
Subtract 16 from -5 to get -21.
p^{2}-4p+4-\left(p-3\right)^{2}+\left(p-4\right)\left(p+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-2\right)^{2}.
p^{2}-4p+4-\left(p^{2}-6p+9\right)+\left(p-4\right)\left(p+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(p-3\right)^{2}.
p^{2}-4p+4-p^{2}+6p-9+\left(p-4\right)\left(p+4\right)
To find the opposite of p^{2}-6p+9, find the opposite of each term.
-4p+4+6p-9+\left(p-4\right)\left(p+4\right)
Combine p^{2} and -p^{2} to get 0.
2p+4-9+\left(p-4\right)\left(p+4\right)
Combine -4p and 6p to get 2p.
2p-5+\left(p-4\right)\left(p+4\right)
Subtract 9 from 4 to get -5.
2p-5+p^{2}-16
Consider \left(p-4\right)\left(p+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
2p-21+p^{2}
Subtract 16 from -5 to get -21.