Solve for p
p=\frac{q^{2}-49}{14}
Solve for q (complex solution)
q=-\sqrt{14p+49}
q=\sqrt{14p+49}
Solve for q
q=\sqrt{14p+49}
q=-\sqrt{14p+49}\text{, }p\geq -\frac{7}{2}
Share
Copied to clipboard
p^{2}+14p+49=p^{2}+q^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(p+7\right)^{2}.
p^{2}+14p+49-p^{2}=q^{2}
Subtract p^{2} from both sides.
14p+49=q^{2}
Combine p^{2} and -p^{2} to get 0.
14p=q^{2}-49
Subtract 49 from both sides.
\frac{14p}{14}=\frac{q^{2}-49}{14}
Divide both sides by 14.
p=\frac{q^{2}-49}{14}
Dividing by 14 undoes the multiplication by 14.
p=\frac{q^{2}}{14}-\frac{7}{2}
Divide q^{2}-49 by 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}