( p + 2.5 ) \times 80 \% = 14
Solve for p
p=15
Share
Copied to clipboard
\left(p+2.5\right)\times \frac{4}{5}=14
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
p\times \frac{4}{5}+2.5\times \frac{4}{5}=14
Use the distributive property to multiply p+2.5 by \frac{4}{5}.
p\times \frac{4}{5}+\frac{5}{2}\times \frac{4}{5}=14
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
p\times \frac{4}{5}+\frac{5\times 4}{2\times 5}=14
Multiply \frac{5}{2} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
p\times \frac{4}{5}+\frac{4}{2}=14
Cancel out 5 in both numerator and denominator.
p\times \frac{4}{5}+2=14
Divide 4 by 2 to get 2.
p\times \frac{4}{5}=14-2
Subtract 2 from both sides.
p\times \frac{4}{5}=12
Subtract 2 from 14 to get 12.
p=12\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
p=\frac{12\times 5}{4}
Express 12\times \frac{5}{4} as a single fraction.
p=\frac{60}{4}
Multiply 12 and 5 to get 60.
p=15
Divide 60 by 4 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}