Solve for n
n=12
n=2
Share
Copied to clipboard
n^{2}-14n+49=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-7\right)^{2}.
n^{2}-14n+49-25=0
Subtract 25 from both sides.
n^{2}-14n+24=0
Subtract 25 from 49 to get 24.
a+b=-14 ab=24
To solve the equation, factor n^{2}-14n+24 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-12 b=-2
The solution is the pair that gives sum -14.
\left(n-12\right)\left(n-2\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
n=12 n=2
To find equation solutions, solve n-12=0 and n-2=0.
n^{2}-14n+49=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-7\right)^{2}.
n^{2}-14n+49-25=0
Subtract 25 from both sides.
n^{2}-14n+24=0
Subtract 25 from 49 to get 24.
a+b=-14 ab=1\times 24=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as n^{2}+an+bn+24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-12 b=-2
The solution is the pair that gives sum -14.
\left(n^{2}-12n\right)+\left(-2n+24\right)
Rewrite n^{2}-14n+24 as \left(n^{2}-12n\right)+\left(-2n+24\right).
n\left(n-12\right)-2\left(n-12\right)
Factor out n in the first and -2 in the second group.
\left(n-12\right)\left(n-2\right)
Factor out common term n-12 by using distributive property.
n=12 n=2
To find equation solutions, solve n-12=0 and n-2=0.
n^{2}-14n+49=25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-7\right)^{2}.
n^{2}-14n+49-25=0
Subtract 25 from both sides.
n^{2}-14n+24=0
Subtract 25 from 49 to get 24.
n=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-14\right)±\sqrt{196-4\times 24}}{2}
Square -14.
n=\frac{-\left(-14\right)±\sqrt{196-96}}{2}
Multiply -4 times 24.
n=\frac{-\left(-14\right)±\sqrt{100}}{2}
Add 196 to -96.
n=\frac{-\left(-14\right)±10}{2}
Take the square root of 100.
n=\frac{14±10}{2}
The opposite of -14 is 14.
n=\frac{24}{2}
Now solve the equation n=\frac{14±10}{2} when ± is plus. Add 14 to 10.
n=12
Divide 24 by 2.
n=\frac{4}{2}
Now solve the equation n=\frac{14±10}{2} when ± is minus. Subtract 10 from 14.
n=2
Divide 4 by 2.
n=12 n=2
The equation is now solved.
\sqrt{\left(n-7\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
n-7=5 n-7=-5
Simplify.
n=12 n=2
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}