Solve for n
n=\sqrt{11}+6\approx 9.31662479
n=6-\sqrt{11}\approx 2.68337521
Share
Copied to clipboard
n^{2}-10n+25=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-5\right)^{2}.
n^{2}-10n+25-2n=0
Subtract 2n from both sides.
n^{2}-12n+25=0
Combine -10n and -2n to get -12n.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 25}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-12\right)±\sqrt{144-4\times 25}}{2}
Square -12.
n=\frac{-\left(-12\right)±\sqrt{144-100}}{2}
Multiply -4 times 25.
n=\frac{-\left(-12\right)±\sqrt{44}}{2}
Add 144 to -100.
n=\frac{-\left(-12\right)±2\sqrt{11}}{2}
Take the square root of 44.
n=\frac{12±2\sqrt{11}}{2}
The opposite of -12 is 12.
n=\frac{2\sqrt{11}+12}{2}
Now solve the equation n=\frac{12±2\sqrt{11}}{2} when ± is plus. Add 12 to 2\sqrt{11}.
n=\sqrt{11}+6
Divide 12+2\sqrt{11} by 2.
n=\frac{12-2\sqrt{11}}{2}
Now solve the equation n=\frac{12±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from 12.
n=6-\sqrt{11}
Divide 12-2\sqrt{11} by 2.
n=\sqrt{11}+6 n=6-\sqrt{11}
The equation is now solved.
n^{2}-10n+25=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-5\right)^{2}.
n^{2}-10n+25-2n=0
Subtract 2n from both sides.
n^{2}-12n+25=0
Combine -10n and -2n to get -12n.
n^{2}-12n=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
n^{2}-12n+\left(-6\right)^{2}=-25+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-12n+36=-25+36
Square -6.
n^{2}-12n+36=11
Add -25 to 36.
\left(n-6\right)^{2}=11
Factor n^{2}-12n+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-6\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
n-6=\sqrt{11} n-6=-\sqrt{11}
Simplify.
n=\sqrt{11}+6 n=6-\sqrt{11}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}