Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-6n+9=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-3\right)^{2}.
n^{2}-6n+9-2n=0
Subtract 2n from both sides.
n^{2}-8n+9=0
Combine -6n and -2n to get -8n.
n=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-8\right)±\sqrt{64-4\times 9}}{2}
Square -8.
n=\frac{-\left(-8\right)±\sqrt{64-36}}{2}
Multiply -4 times 9.
n=\frac{-\left(-8\right)±\sqrt{28}}{2}
Add 64 to -36.
n=\frac{-\left(-8\right)±2\sqrt{7}}{2}
Take the square root of 28.
n=\frac{8±2\sqrt{7}}{2}
The opposite of -8 is 8.
n=\frac{2\sqrt{7}+8}{2}
Now solve the equation n=\frac{8±2\sqrt{7}}{2} when ± is plus. Add 8 to 2\sqrt{7}.
n=\sqrt{7}+4
Divide 8+2\sqrt{7} by 2.
n=\frac{8-2\sqrt{7}}{2}
Now solve the equation n=\frac{8±2\sqrt{7}}{2} when ± is minus. Subtract 2\sqrt{7} from 8.
n=4-\sqrt{7}
Divide 8-2\sqrt{7} by 2.
n=\sqrt{7}+4 n=4-\sqrt{7}
The equation is now solved.
n^{2}-6n+9=2n
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(n-3\right)^{2}.
n^{2}-6n+9-2n=0
Subtract 2n from both sides.
n^{2}-8n+9=0
Combine -6n and -2n to get -8n.
n^{2}-8n=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
n^{2}-8n+\left(-4\right)^{2}=-9+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-8n+16=-9+16
Square -4.
n^{2}-8n+16=7
Add -9 to 16.
\left(n-4\right)^{2}=7
Factor n^{2}-8n+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-4\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
n-4=\sqrt{7} n-4=-\sqrt{7}
Simplify.
n=\sqrt{7}+4 n=4-\sqrt{7}
Add 4 to both sides of the equation.