Solve for n
n=\frac{3x}{x-2}
x\neq 2
Solve for x
x=\frac{2n}{n-3}
n\neq 3
Graph
Share
Copied to clipboard
nx-x=2\left(n+x\right)
Use the distributive property to multiply n-1 by x.
nx-x=2n+2x
Use the distributive property to multiply 2 by n+x.
nx-x-2n=2x
Subtract 2n from both sides.
nx-2n=2x+x
Add x to both sides.
nx-2n=3x
Combine 2x and x to get 3x.
\left(x-2\right)n=3x
Combine all terms containing n.
\frac{\left(x-2\right)n}{x-2}=\frac{3x}{x-2}
Divide both sides by x-2.
n=\frac{3x}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
nx-x=2\left(n+x\right)
Use the distributive property to multiply n-1 by x.
nx-x=2n+2x
Use the distributive property to multiply 2 by n+x.
nx-x-2x=2n
Subtract 2x from both sides.
nx-3x=2n
Combine -x and -2x to get -3x.
\left(n-3\right)x=2n
Combine all terms containing x.
\frac{\left(n-3\right)x}{n-3}=\frac{2n}{n-3}
Divide both sides by n-3.
x=\frac{2n}{n-3}
Dividing by n-3 undoes the multiplication by n-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}