( m g - k v ) d t = d v
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(t=0\text{ and }v=0\right)\text{ or }\left(v=0\text{ and }g=0\text{ and }t\neq 0\right)\text{ or }\left(k=-\frac{1}{t}\text{ and }t\neq 0\text{ and }g=0\right)\text{ or }\left(m=\frac{v\left(kt+1\right)}{gt}\text{ and }t\neq 0\text{ and }g\neq 0\right)\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{v\left(kt+1\right)}{mt}\text{, }&t\neq 0\text{ and }m\neq 0\\g\in \mathrm{R}\text{, }&\left(v=0\text{ and }t=0\right)\text{ or }\left(v=0\text{ and }m=0\text{ and }t\neq 0\right)\text{ or }\left(k=-\frac{1}{t}\text{ and }t\neq 0\text{ and }m=0\right)\text{ or }d=0\end{matrix}\right.
Share
Copied to clipboard
\left(mgd-kvd\right)t=dv
Use the distributive property to multiply mg-kv by d.
mgdt-kvdt=dv
Use the distributive property to multiply mgd-kvd by t.
mgdt-kvdt-dv=0
Subtract dv from both sides.
\left(mgt-kvt-v\right)d=0
Combine all terms containing d.
\left(gmt-ktv-v\right)d=0
The equation is in standard form.
d=0
Divide 0 by mgt-kvt-v.
\left(mgd-kvd\right)t=dv
Use the distributive property to multiply mg-kv by d.
mgdt-kvdt=dv
Use the distributive property to multiply mgd-kvd by t.
mgdt=dv+kvdt
Add kvdt to both sides.
dmtg=dktv+dv
The equation is in standard form.
\frac{dmtg}{dmt}=\frac{dv\left(kt+1\right)}{dmt}
Divide both sides by mdt.
g=\frac{dv\left(kt+1\right)}{dmt}
Dividing by mdt undoes the multiplication by mdt.
g=\frac{v\left(kt+1\right)}{mt}
Divide vd\left(1+kt\right) by mdt.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}