Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m+n\right)
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m+n\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m+n\right)
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m+n\right)
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}-4mn
Use the distributive property to multiply -4m by m+n.
-2m^{2}-2mn-4mn
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-6mn
Combine -2mn and -4mn to get -6mn.
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m+n\right)
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m+n\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m+n\right)
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m+n\right)
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}-4mn
Use the distributive property to multiply -4m by m+n.
-2m^{2}-2mn-4mn
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-6mn
Combine -2mn and -4mn to get -6mn.