Evaluate
-2m\left(m+3n\right)
Expand
-2m^{2}-6mn
Share
Copied to clipboard
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m+n\right)
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m+n\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m+n\right)
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m+n\right)
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}-4mn
Use the distributive property to multiply -4m by m+n.
-2m^{2}-2mn-4mn
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-6mn
Combine -2mn and -4mn to get -6mn.
m^{2}-n^{2}+\left(m-n\right)^{2}-4m\left(m+n\right)
Consider \left(m+n\right)\left(m-n\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
m^{2}-n^{2}+m^{2}-2mn+n^{2}-4m\left(m+n\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(m-n\right)^{2}.
2m^{2}-n^{2}-2mn+n^{2}-4m\left(m+n\right)
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}-2mn-4m\left(m+n\right)
Combine -n^{2} and n^{2} to get 0.
2m^{2}-2mn-4m^{2}-4mn
Use the distributive property to multiply -4m by m+n.
-2m^{2}-2mn-4mn
Combine 2m^{2} and -4m^{2} to get -2m^{2}.
-2m^{2}-6mn
Combine -2mn and -4mn to get -6mn.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}