Solve for m
m=\sqrt{14}-2\approx 1.741657387
m=-\sqrt{14}-2\approx -5.741657387
Share
Copied to clipboard
m^{2}+8m+16+m^{2}=6^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+4\right)^{2}.
2m^{2}+8m+16=6^{2}
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}+8m+16=36
Calculate 6 to the power of 2 and get 36.
2m^{2}+8m+16-36=0
Subtract 36 from both sides.
2m^{2}+8m-20=0
Subtract 36 from 16 to get -20.
m=\frac{-8±\sqrt{8^{2}-4\times 2\left(-20\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-8±\sqrt{64-4\times 2\left(-20\right)}}{2\times 2}
Square 8.
m=\frac{-8±\sqrt{64-8\left(-20\right)}}{2\times 2}
Multiply -4 times 2.
m=\frac{-8±\sqrt{64+160}}{2\times 2}
Multiply -8 times -20.
m=\frac{-8±\sqrt{224}}{2\times 2}
Add 64 to 160.
m=\frac{-8±4\sqrt{14}}{2\times 2}
Take the square root of 224.
m=\frac{-8±4\sqrt{14}}{4}
Multiply 2 times 2.
m=\frac{4\sqrt{14}-8}{4}
Now solve the equation m=\frac{-8±4\sqrt{14}}{4} when ± is plus. Add -8 to 4\sqrt{14}.
m=\sqrt{14}-2
Divide -8+4\sqrt{14} by 4.
m=\frac{-4\sqrt{14}-8}{4}
Now solve the equation m=\frac{-8±4\sqrt{14}}{4} when ± is minus. Subtract 4\sqrt{14} from -8.
m=-\sqrt{14}-2
Divide -8-4\sqrt{14} by 4.
m=\sqrt{14}-2 m=-\sqrt{14}-2
The equation is now solved.
m^{2}+8m+16+m^{2}=6^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+4\right)^{2}.
2m^{2}+8m+16=6^{2}
Combine m^{2} and m^{2} to get 2m^{2}.
2m^{2}+8m+16=36
Calculate 6 to the power of 2 and get 36.
2m^{2}+8m=36-16
Subtract 16 from both sides.
2m^{2}+8m=20
Subtract 16 from 36 to get 20.
\frac{2m^{2}+8m}{2}=\frac{20}{2}
Divide both sides by 2.
m^{2}+\frac{8}{2}m=\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
m^{2}+4m=\frac{20}{2}
Divide 8 by 2.
m^{2}+4m=10
Divide 20 by 2.
m^{2}+4m+2^{2}=10+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+4m+4=10+4
Square 2.
m^{2}+4m+4=14
Add 10 to 4.
\left(m+2\right)^{2}=14
Factor m^{2}+4m+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+2\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
m+2=\sqrt{14} m+2=-\sqrt{14}
Simplify.
m=\sqrt{14}-2 m=-\sqrt{14}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}