Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(m+2\right)\left(2-m\right)}{2-m}+\frac{5}{2-m}\right)\times \frac{2m-4}{3-m}
To add or subtract expressions, expand them to make their denominators the same. Multiply m+2 times \frac{2-m}{2-m}.
\frac{\left(m+2\right)\left(2-m\right)+5}{2-m}\times \frac{2m-4}{3-m}
Since \frac{\left(m+2\right)\left(2-m\right)}{2-m} and \frac{5}{2-m} have the same denominator, add them by adding their numerators.
\frac{2m-m^{2}+4-2m+5}{2-m}\times \frac{2m-4}{3-m}
Do the multiplications in \left(m+2\right)\left(2-m\right)+5.
\frac{-m^{2}+9}{2-m}\times \frac{2m-4}{3-m}
Combine like terms in 2m-m^{2}+4-2m+5.
\frac{\left(-m^{2}+9\right)\left(2m-4\right)}{\left(2-m\right)\left(3-m\right)}
Multiply \frac{-m^{2}+9}{2-m} times \frac{2m-4}{3-m} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(m-3\right)\left(m-2\right)\left(-m-3\right)}{\left(-m+2\right)\left(-m+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2\left(-m-3\right)\left(-m+2\right)\left(-m+3\right)}{\left(-m+2\right)\left(-m+3\right)}
Extract the negative sign in -3+m. Extract the negative sign in -2+m.
-\left(-1\right)\times 2\left(-m-3\right)
Cancel out \left(-m+2\right)\left(-m+3\right) in both numerator and denominator.
-2m-6
Expand the expression.
\left(\frac{\left(m+2\right)\left(2-m\right)}{2-m}+\frac{5}{2-m}\right)\times \frac{2m-4}{3-m}
To add or subtract expressions, expand them to make their denominators the same. Multiply m+2 times \frac{2-m}{2-m}.
\frac{\left(m+2\right)\left(2-m\right)+5}{2-m}\times \frac{2m-4}{3-m}
Since \frac{\left(m+2\right)\left(2-m\right)}{2-m} and \frac{5}{2-m} have the same denominator, add them by adding their numerators.
\frac{2m-m^{2}+4-2m+5}{2-m}\times \frac{2m-4}{3-m}
Do the multiplications in \left(m+2\right)\left(2-m\right)+5.
\frac{-m^{2}+9}{2-m}\times \frac{2m-4}{3-m}
Combine like terms in 2m-m^{2}+4-2m+5.
\frac{\left(-m^{2}+9\right)\left(2m-4\right)}{\left(2-m\right)\left(3-m\right)}
Multiply \frac{-m^{2}+9}{2-m} times \frac{2m-4}{3-m} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(m-3\right)\left(m-2\right)\left(-m-3\right)}{\left(-m+2\right)\left(-m+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2\left(-m-3\right)\left(-m+2\right)\left(-m+3\right)}{\left(-m+2\right)\left(-m+3\right)}
Extract the negative sign in -3+m. Extract the negative sign in -2+m.
-\left(-1\right)\times 2\left(-m-3\right)
Cancel out \left(-m+2\right)\left(-m+3\right) in both numerator and denominator.
-2m-6
Expand the expression.