Evaluate
-2m-6
Expand
-2m-6
Quiz
Polynomial
5 problems similar to:
( m + 2 + \frac { 5 } { 2 - m } ) \cdot \frac { 2 m - 4 } { 3 - m }
Share
Copied to clipboard
\left(\frac{\left(m+2\right)\left(2-m\right)}{2-m}+\frac{5}{2-m}\right)\times \frac{2m-4}{3-m}
To add or subtract expressions, expand them to make their denominators the same. Multiply m+2 times \frac{2-m}{2-m}.
\frac{\left(m+2\right)\left(2-m\right)+5}{2-m}\times \frac{2m-4}{3-m}
Since \frac{\left(m+2\right)\left(2-m\right)}{2-m} and \frac{5}{2-m} have the same denominator, add them by adding their numerators.
\frac{2m-m^{2}+4-2m+5}{2-m}\times \frac{2m-4}{3-m}
Do the multiplications in \left(m+2\right)\left(2-m\right)+5.
\frac{-m^{2}+9}{2-m}\times \frac{2m-4}{3-m}
Combine like terms in 2m-m^{2}+4-2m+5.
\frac{\left(-m^{2}+9\right)\left(2m-4\right)}{\left(2-m\right)\left(3-m\right)}
Multiply \frac{-m^{2}+9}{2-m} times \frac{2m-4}{3-m} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(m-3\right)\left(m-2\right)\left(-m-3\right)}{\left(-m+2\right)\left(-m+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2\left(-m-3\right)\left(-m+2\right)\left(-m+3\right)}{\left(-m+2\right)\left(-m+3\right)}
Extract the negative sign in -3+m. Extract the negative sign in -2+m.
-\left(-1\right)\times 2\left(-m-3\right)
Cancel out \left(-m+2\right)\left(-m+3\right) in both numerator and denominator.
-2m-6
Expand the expression.
\left(\frac{\left(m+2\right)\left(2-m\right)}{2-m}+\frac{5}{2-m}\right)\times \frac{2m-4}{3-m}
To add or subtract expressions, expand them to make their denominators the same. Multiply m+2 times \frac{2-m}{2-m}.
\frac{\left(m+2\right)\left(2-m\right)+5}{2-m}\times \frac{2m-4}{3-m}
Since \frac{\left(m+2\right)\left(2-m\right)}{2-m} and \frac{5}{2-m} have the same denominator, add them by adding their numerators.
\frac{2m-m^{2}+4-2m+5}{2-m}\times \frac{2m-4}{3-m}
Do the multiplications in \left(m+2\right)\left(2-m\right)+5.
\frac{-m^{2}+9}{2-m}\times \frac{2m-4}{3-m}
Combine like terms in 2m-m^{2}+4-2m+5.
\frac{\left(-m^{2}+9\right)\left(2m-4\right)}{\left(2-m\right)\left(3-m\right)}
Multiply \frac{-m^{2}+9}{2-m} times \frac{2m-4}{3-m} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(m-3\right)\left(m-2\right)\left(-m-3\right)}{\left(-m+2\right)\left(-m+3\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\times 2\left(-m-3\right)\left(-m+2\right)\left(-m+3\right)}{\left(-m+2\right)\left(-m+3\right)}
Extract the negative sign in -3+m. Extract the negative sign in -2+m.
-\left(-1\right)\times 2\left(-m-3\right)
Cancel out \left(-m+2\right)\left(-m+3\right) in both numerator and denominator.
-2m-6
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}