Solve for m
m>-\frac{1}{4}
Share
Copied to clipboard
m^{2}+2m+1-m\left(m-2\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
m^{2}+2m+1-\left(m^{2}-2m\right)>0
Use the distributive property to multiply m by m-2.
m^{2}+2m+1-m^{2}+2m>0
To find the opposite of m^{2}-2m, find the opposite of each term.
2m+1+2m>0
Combine m^{2} and -m^{2} to get 0.
4m+1>0
Combine 2m and 2m to get 4m.
4m>-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
m>-\frac{1}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}