Solve for k
k=-\frac{30-4x-3x^{2}}{x\left(x-1\right)}
x\neq 1\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{k^{2}-112k+376}+k+4}{2\left(k-3\right)}\text{; }x=\frac{-\sqrt{k^{2}-112k+376}+k+4}{2\left(k-3\right)}\text{, }&k\neq 3\\x=\frac{30}{7}\text{, }&k=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{k^{2}-112k+376}+k+4}{2\left(k-3\right)}\text{; }x=\frac{-\sqrt{k^{2}-112k+376}+k+4}{2\left(k-3\right)}\text{, }&\left(k\neq 3\text{ and }k\leq 56-2\sqrt{690}\right)\text{ or }k\geq 2\sqrt{690}+56\\x=\frac{30}{7}\text{, }&k=3\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}-3x^{2}-\left(k+4\right)x+30=0
Use the distributive property to multiply k-3 by x^{2}.
kx^{2}-3x^{2}-\left(kx+4x\right)+30=0
Use the distributive property to multiply k+4 by x.
kx^{2}-3x^{2}-kx-4x+30=0
To find the opposite of kx+4x, find the opposite of each term.
kx^{2}-kx-4x+30=3x^{2}
Add 3x^{2} to both sides. Anything plus zero gives itself.
kx^{2}-kx+30=3x^{2}+4x
Add 4x to both sides.
kx^{2}-kx=3x^{2}+4x-30
Subtract 30 from both sides.
\left(x^{2}-x\right)k=3x^{2}+4x-30
Combine all terms containing k.
\frac{\left(x^{2}-x\right)k}{x^{2}-x}=\frac{3x^{2}+4x-30}{x^{2}-x}
Divide both sides by x^{2}-x.
k=\frac{3x^{2}+4x-30}{x^{2}-x}
Dividing by x^{2}-x undoes the multiplication by x^{2}-x.
k=\frac{3x^{2}+4x-30}{x\left(x-1\right)}
Divide 3x^{2}+4x-30 by x^{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}