Solve for k
k\in \left(-3,9\right)
Share
Copied to clipboard
k^{2}-6k+9-4\times 1\times 9<0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-3\right)^{2}.
k^{2}-6k+9-4\times 9<0
Multiply 4 and 1 to get 4.
k^{2}-6k+9-36<0
Multiply 4 and 9 to get 36.
k^{2}-6k-27<0
Subtract 36 from 9 to get -27.
k^{2}-6k-27=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\left(-27\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -6 for b, and -27 for c in the quadratic formula.
k=\frac{6±12}{2}
Do the calculations.
k=9 k=-3
Solve the equation k=\frac{6±12}{2} when ± is plus and when ± is minus.
\left(k-9\right)\left(k+3\right)<0
Rewrite the inequality by using the obtained solutions.
k-9>0 k+3<0
For the product to be negative, k-9 and k+3 have to be of the opposite signs. Consider the case when k-9 is positive and k+3 is negative.
k\in \emptyset
This is false for any k.
k+3>0 k-9<0
Consider the case when k+3 is positive and k-9 is negative.
k\in \left(-3,9\right)
The solution satisfying both inequalities is k\in \left(-3,9\right).
k\in \left(-3,9\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}