Solve for k (complex solution)
\left\{\begin{matrix}\\k=1-n\text{, }&\text{unconditionally}\\k=n\text{, }&n\neq 0\\k=-\left(n+1\right)\text{, }&Numerator(2n+1)\text{bmod}2=0\\k\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}\\n=1-k\text{, }&\text{unconditionally}\\n=k\text{, }&k\neq 0\\n=-\left(k+1\right)\text{, }&Numerator(2k+1)\text{bmod}2=0\\n\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=1-n\text{, }&\text{unconditionally}\\k=n\text{, }&n\neq 0\\k=-\left(n+1\right)\text{, }&Numerator(2n+1)\text{bmod}2=0\text{ and }Denominator(2n)\text{bmod}2=1\\k\in \mathrm{R}\text{, }&x=0\text{ and }n<-k\text{ and }Denominator(k-n)\text{bmod}2=1\\k=-n\text{, }&n<0\text{ and }x=0\\k>-n\text{, }&x=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}\\n=1-k\text{, }&\text{unconditionally}\\n=k\text{, }&k\neq 0\\n=-\left(k+1\right)\text{, }&Numerator(2k+1)\text{bmod}2=0\text{ and }Denominator(2k)\text{bmod}2=1\\n\in \mathrm{R}\text{, }&x=0\text{ and }k<-n\text{ and }Denominator(k-n)\text{bmod}2=1\\n=-k\text{, }&k>0\text{ and }x=0\\n>-k\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}