Solve for k
k=\sqrt{10}+2\approx 5.16227766
k=2-\sqrt{10}\approx -1.16227766
Share
Copied to clipboard
k^{2}+4k+4-3\left(k+2\right)=5k+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k+2\right)^{2}.
k^{2}+4k+4-3k-6=5k+4
Use the distributive property to multiply -3 by k+2.
k^{2}+k+4-6=5k+4
Combine 4k and -3k to get k.
k^{2}+k-2=5k+4
Subtract 6 from 4 to get -2.
k^{2}+k-2-5k=4
Subtract 5k from both sides.
k^{2}-4k-2=4
Combine k and -5k to get -4k.
k^{2}-4k-2-4=0
Subtract 4 from both sides.
k^{2}-4k-6=0
Subtract 4 from -2 to get -6.
k=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-6\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-4\right)±\sqrt{16-4\left(-6\right)}}{2}
Square -4.
k=\frac{-\left(-4\right)±\sqrt{16+24}}{2}
Multiply -4 times -6.
k=\frac{-\left(-4\right)±\sqrt{40}}{2}
Add 16 to 24.
k=\frac{-\left(-4\right)±2\sqrt{10}}{2}
Take the square root of 40.
k=\frac{4±2\sqrt{10}}{2}
The opposite of -4 is 4.
k=\frac{2\sqrt{10}+4}{2}
Now solve the equation k=\frac{4±2\sqrt{10}}{2} when ± is plus. Add 4 to 2\sqrt{10}.
k=\sqrt{10}+2
Divide 4+2\sqrt{10} by 2.
k=\frac{4-2\sqrt{10}}{2}
Now solve the equation k=\frac{4±2\sqrt{10}}{2} when ± is minus. Subtract 2\sqrt{10} from 4.
k=2-\sqrt{10}
Divide 4-2\sqrt{10} by 2.
k=\sqrt{10}+2 k=2-\sqrt{10}
The equation is now solved.
k^{2}+4k+4-3\left(k+2\right)=5k+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(k+2\right)^{2}.
k^{2}+4k+4-3k-6=5k+4
Use the distributive property to multiply -3 by k+2.
k^{2}+k+4-6=5k+4
Combine 4k and -3k to get k.
k^{2}+k-2=5k+4
Subtract 6 from 4 to get -2.
k^{2}+k-2-5k=4
Subtract 5k from both sides.
k^{2}-4k-2=4
Combine k and -5k to get -4k.
k^{2}-4k=4+2
Add 2 to both sides.
k^{2}-4k=6
Add 4 and 2 to get 6.
k^{2}-4k+\left(-2\right)^{2}=6+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-4k+4=6+4
Square -2.
k^{2}-4k+4=10
Add 6 to 4.
\left(k-2\right)^{2}=10
Factor k^{2}-4k+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-2\right)^{2}}=\sqrt{10}
Take the square root of both sides of the equation.
k-2=\sqrt{10} k-2=-\sqrt{10}
Simplify.
k=\sqrt{10}+2 k=2-\sqrt{10}
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}