Solve for k
k=\frac{2\left(x+9\right)}{x-5}
x\neq 5
Solve for x
x=\frac{5k+18}{k-2}
k\neq 2
Graph
Share
Copied to clipboard
kx+x-3\left(x+6\right)=5k
Use the distributive property to multiply k+1 by x.
kx+x-3x-18=5k
Use the distributive property to multiply -3 by x+6.
kx-2x-18=5k
Combine x and -3x to get -2x.
kx-2x-18-5k=0
Subtract 5k from both sides.
kx-18-5k=2x
Add 2x to both sides. Anything plus zero gives itself.
kx-5k=2x+18
Add 18 to both sides.
\left(x-5\right)k=2x+18
Combine all terms containing k.
\frac{\left(x-5\right)k}{x-5}=\frac{2x+18}{x-5}
Divide both sides by x-5.
k=\frac{2x+18}{x-5}
Dividing by x-5 undoes the multiplication by x-5.
k=\frac{2\left(x+9\right)}{x-5}
Divide 18+2x by x-5.
kx+x-3\left(x+6\right)=5k
Use the distributive property to multiply k+1 by x.
kx+x-3x-18=5k
Use the distributive property to multiply -3 by x+6.
kx-2x-18=5k
Combine x and -3x to get -2x.
kx-2x=5k+18
Add 18 to both sides.
\left(k-2\right)x=5k+18
Combine all terms containing x.
\frac{\left(k-2\right)x}{k-2}=\frac{5k+18}{k-2}
Divide both sides by k-2.
x=\frac{5k+18}{k-2}
Dividing by k-2 undoes the multiplication by k-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}