Evaluate
2-4k
Expand
2-4k
Share
Copied to clipboard
\left(k+1\right)\left(k-3-\left(-k\right)\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of 3-k, find the opposite of each term.
\left(k+1\right)\left(k-3+k\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -k is k.
\left(k+1\right)\left(2k-3\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine k and k to get 2k.
2k^{2}-3k+2k-3-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of k+1 by each term of 2k-3.
2k^{2}-k-3-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -3k and 2k to get -k.
2k^{2}-k-3-\left(2-k\right)\left(1-k-2-k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of 2+k, find the opposite of each term.
2k^{2}-k-3-\left(2-k\right)\left(-1-k-k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Subtract 2 from 1 to get -1.
2k^{2}-k-3-\left(2-k\right)\left(-1-2k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -k and -k to get -2k.
2k^{2}-k-3-\left(-2-4k+k+2k^{2}\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of 2-k by each term of -1-2k.
2k^{2}-k-3-\left(-2-3k+2k^{2}\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -4k and k to get -3k.
2k^{2}-k-3-\left(-2\right)-\left(-3k\right)-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of -2-3k+2k^{2}, find the opposite of each term.
2k^{2}-k-3+2-\left(-3k\right)-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -2 is 2.
2k^{2}-k-3+2+3k-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -3k is 3k.
2k^{2}-k-1+3k-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Add -3 and 2 to get -1.
2k^{2}+2k-1-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -k and 3k to get 2k.
2k-1+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine 2k^{2} and -2k^{2} to get 0.
2k-1+1\left(3-k-3k+k^{2}-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of 1-k by each term of 3-k.
2k-1+1\left(3-4k+k^{2}-k\left(2+k\right)\right)
Combine -k and -3k to get -4k.
2k-1+1\left(3-4k+k^{2}-\left(2k+k^{2}\right)\right)
Use the distributive property to multiply k by 2+k.
2k-1+1\left(3-4k+k^{2}-2k-k^{2}\right)
To find the opposite of 2k+k^{2}, find the opposite of each term.
2k-1+1\left(3-6k+k^{2}-k^{2}\right)
Combine -4k and -2k to get -6k.
2k-1+1\left(3-6k\right)
Combine k^{2} and -k^{2} to get 0.
2k-1+3-6k
Use the distributive property to multiply 1 by 3-6k.
2k+2-6k
Add -1 and 3 to get 2.
-4k+2
Combine 2k and -6k to get -4k.
\left(k+1\right)\left(k-3-\left(-k\right)\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of 3-k, find the opposite of each term.
\left(k+1\right)\left(k-3+k\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -k is k.
\left(k+1\right)\left(2k-3\right)-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine k and k to get 2k.
2k^{2}-3k+2k-3-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of k+1 by each term of 2k-3.
2k^{2}-k-3-\left(2-k\right)\left(1-k-\left(2+k\right)\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -3k and 2k to get -k.
2k^{2}-k-3-\left(2-k\right)\left(1-k-2-k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of 2+k, find the opposite of each term.
2k^{2}-k-3-\left(2-k\right)\left(-1-k-k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Subtract 2 from 1 to get -1.
2k^{2}-k-3-\left(2-k\right)\left(-1-2k\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -k and -k to get -2k.
2k^{2}-k-3-\left(-2-4k+k+2k^{2}\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of 2-k by each term of -1-2k.
2k^{2}-k-3-\left(-2-3k+2k^{2}\right)+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -4k and k to get -3k.
2k^{2}-k-3-\left(-2\right)-\left(-3k\right)-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
To find the opposite of -2-3k+2k^{2}, find the opposite of each term.
2k^{2}-k-3+2-\left(-3k\right)-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -2 is 2.
2k^{2}-k-3+2+3k-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
The opposite of -3k is 3k.
2k^{2}-k-1+3k-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Add -3 and 2 to get -1.
2k^{2}+2k-1-2k^{2}+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine -k and 3k to get 2k.
2k-1+1\left(\left(1-k\right)\left(3-k\right)-k\left(2+k\right)\right)
Combine 2k^{2} and -2k^{2} to get 0.
2k-1+1\left(3-k-3k+k^{2}-k\left(2+k\right)\right)
Apply the distributive property by multiplying each term of 1-k by each term of 3-k.
2k-1+1\left(3-4k+k^{2}-k\left(2+k\right)\right)
Combine -k and -3k to get -4k.
2k-1+1\left(3-4k+k^{2}-\left(2k+k^{2}\right)\right)
Use the distributive property to multiply k by 2+k.
2k-1+1\left(3-4k+k^{2}-2k-k^{2}\right)
To find the opposite of 2k+k^{2}, find the opposite of each term.
2k-1+1\left(3-6k+k^{2}-k^{2}\right)
Combine -4k and -2k to get -6k.
2k-1+1\left(3-6k\right)
Combine k^{2} and -k^{2} to get 0.
2k-1+3-6k
Use the distributive property to multiply 1 by 3-6k.
2k+2-6k
Add -1 and 3 to get 2.
-4k+2
Combine 2k and -6k to get -4k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}