Solve for j
j=\frac{1}{2}-\frac{1}{2}i+\frac{3+2i}{x}
x\neq 0
Solve for x
x=\frac{6+4i}{2j+\left(-1+i\right)}
j\neq \frac{1}{2}-\frac{1}{2}i
Share
Copied to clipboard
-1-2i+jx=\frac{x}{1+i}+2
Use the distributive property to multiply i-2 by i.
jx=\frac{x}{1+i}+2+\left(1+2i\right)
Add 1+2i to both sides.
jx=\frac{x}{1+i}+3+2i
Do the additions in 2+\left(1+2i\right).
xj=\left(\frac{1}{2}-\frac{1}{2}i\right)x+\left(3+2i\right)
The equation is in standard form.
\frac{xj}{x}=\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)x+\left(3+2i\right)}{x}
Divide both sides by x.
j=\frac{\left(\frac{1}{2}-\frac{1}{2}i\right)x+\left(3+2i\right)}{x}
Dividing by x undoes the multiplication by x.
j=\frac{1}{2}-\frac{1}{2}i+\frac{3+2i}{x}
Divide \left(\frac{1}{2}-\frac{1}{2}i\right)x+\left(3+2i\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}