Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

i\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
i\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{3} is 3.
i\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
i\left(3-2\sqrt{6}+2\right)
The square of \sqrt{2} is 2.
i\left(5-2\sqrt{6}\right)
Add 3 and 2 to get 5.
5i-2i\sqrt{6}
Use the distributive property to multiply i by 5-2\sqrt{6}.
i\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-\sqrt{2}\right)^{2}.
i\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{3} is 3.
i\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
i\left(3-2\sqrt{6}+2\right)
The square of \sqrt{2} is 2.
i\left(5-2\sqrt{6}\right)
Add 3 and 2 to get 5.
5i-2i\sqrt{6}
Use the distributive property to multiply i by 5-2\sqrt{6}.