Solve for g
g=\frac{21}{4}-4x
Solve for x
x=-\frac{g}{4}+\frac{21}{16}
Graph
Share
Copied to clipboard
12g\times \frac{1}{3}-12\left(\frac{3}{4}-\frac{x-3}{2}\right)=2\left(x-3\right)-12x
Multiply both sides of the equation by 12, the least common multiple of 3,4,2,6.
4g-12\left(\frac{3}{4}-\frac{x-3}{2}\right)=2\left(x-3\right)-12x
Multiply 12 and \frac{1}{3} to get 4.
4g-12\left(\frac{3}{4}-\frac{2\left(x-3\right)}{4}\right)=2\left(x-3\right)-12x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{x-3}{2} times \frac{2}{2}.
4g-12\times \frac{3-2\left(x-3\right)}{4}=2\left(x-3\right)-12x
Since \frac{3}{4} and \frac{2\left(x-3\right)}{4} have the same denominator, subtract them by subtracting their numerators.
4g-12\times \frac{3-2x+6}{4}=2\left(x-3\right)-12x
Do the multiplications in 3-2\left(x-3\right).
4g-12\times \frac{9-2x}{4}=2\left(x-3\right)-12x
Combine like terms in 3-2x+6.
4g-3\left(9-2x\right)=2\left(x-3\right)-12x
Cancel out 4, the greatest common factor in 12 and 4.
4g-27+6x=2\left(x-3\right)-12x
Use the distributive property to multiply -3 by 9-2x.
4g-27+6x=2x-6-12x
Use the distributive property to multiply 2 by x-3.
4g-27+6x=-10x-6
Combine 2x and -12x to get -10x.
4g+6x=-10x-6+27
Add 27 to both sides.
4g+6x=-10x+21
Add -6 and 27 to get 21.
4g=-10x+21-6x
Subtract 6x from both sides.
4g=-16x+21
Combine -10x and -6x to get -16x.
4g=21-16x
The equation is in standard form.
\frac{4g}{4}=\frac{21-16x}{4}
Divide both sides by 4.
g=\frac{21-16x}{4}
Dividing by 4 undoes the multiplication by 4.
g=\frac{21}{4}-4x
Divide -16x+21 by 4.
12g\times \frac{1}{3}-12\left(\frac{3}{4}-\frac{x-3}{2}\right)=2\left(x-3\right)-12x
Multiply both sides of the equation by 12, the least common multiple of 3,4,2,6.
4g-12\left(\frac{3}{4}-\frac{x-3}{2}\right)=2\left(x-3\right)-12x
Multiply 12 and \frac{1}{3} to get 4.
4g-12\left(\frac{3}{4}-\frac{2\left(x-3\right)}{4}\right)=2\left(x-3\right)-12x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{x-3}{2} times \frac{2}{2}.
4g-12\times \frac{3-2\left(x-3\right)}{4}=2\left(x-3\right)-12x
Since \frac{3}{4} and \frac{2\left(x-3\right)}{4} have the same denominator, subtract them by subtracting their numerators.
4g-12\times \frac{3-2x+6}{4}=2\left(x-3\right)-12x
Do the multiplications in 3-2\left(x-3\right).
4g-12\times \frac{9-2x}{4}=2\left(x-3\right)-12x
Combine like terms in 3-2x+6.
4g-3\left(9-2x\right)=2\left(x-3\right)-12x
Cancel out 4, the greatest common factor in 12 and 4.
4g-27+6x=2\left(x-3\right)-12x
Use the distributive property to multiply -3 by 9-2x.
4g-27+6x=2x-6-12x
Use the distributive property to multiply 2 by x-3.
4g-27+6x=-10x-6
Combine 2x and -12x to get -10x.
4g-27+6x+10x=-6
Add 10x to both sides.
4g-27+16x=-6
Combine 6x and 10x to get 16x.
-27+16x=-6-4g
Subtract 4g from both sides.
16x=-6-4g+27
Add 27 to both sides.
16x=21-4g
Add -6 and 27 to get 21.
\frac{16x}{16}=\frac{21-4g}{16}
Divide both sides by 16.
x=\frac{21-4g}{16}
Dividing by 16 undoes the multiplication by 16.
x=-\frac{g}{4}+\frac{21}{16}
Divide 21-4g by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}