( f 24 ^ { x + 1 } + 2 ^ { x + 3 } = 320 g i
Solve for f
f=-\frac{2^{x}-40ig}{3\times 24^{x}}
Solve for g
g=\frac{-3if\times 24^{x}-i\times 2^{x}}{40}
Share
Copied to clipboard
f\times 24^{x+1}+2^{x+3}=320ig
Multiply 320 and i to get 320i.
f\times 24^{x+1}=320ig-2^{x+3}
Subtract 2^{x+3} from both sides.
24^{x+1}f=320ig-2^{x+3}
The equation is in standard form.
\frac{24^{x+1}f}{24^{x+1}}=\frac{320ig-8\times 2^{x}}{24^{x+1}}
Divide both sides by 24^{x+1}.
f=\frac{320ig-8\times 2^{x}}{24^{x+1}}
Dividing by 24^{x+1} undoes the multiplication by 24^{x+1}.
f=\frac{40ig-2^{x}}{3\times 24^{x}}
Divide 320ig-8\times 2^{x} by 24^{x+1}.
f\times 24^{x+1}+2^{x+3}=320ig
Multiply 320 and i to get 320i.
320ig=f\times 24^{x+1}+2^{x+3}
Swap sides so that all variable terms are on the left hand side.
\frac{320ig}{320i}=\frac{24f\times 24^{x}+8\times 2^{x}}{320i}
Divide both sides by 320i.
g=\frac{24f\times 24^{x}+8\times 2^{x}}{320i}
Dividing by 320i undoes the multiplication by 320i.
g=\frac{-3if\times 24^{x}-i\times 2^{x}}{40}
Divide 24\times 24^{x}f+8\times 2^{x} by 320i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}