Skip to main content
Solve for f
Tick mark Image
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

f\times 24^{x+1}+2^{x+3}=320ig
Multiply 320 and i to get 320i.
f\times 24^{x+1}=320ig-2^{x+3}
Subtract 2^{x+3} from both sides.
24^{x+1}f=320ig-2^{x+3}
The equation is in standard form.
\frac{24^{x+1}f}{24^{x+1}}=\frac{320ig-8\times 2^{x}}{24^{x+1}}
Divide both sides by 24^{x+1}.
f=\frac{320ig-8\times 2^{x}}{24^{x+1}}
Dividing by 24^{x+1} undoes the multiplication by 24^{x+1}.
f=\frac{40ig-2^{x}}{3\times 24^{x}}
Divide 320ig-8\times 2^{x} by 24^{x+1}.
f\times 24^{x+1}+2^{x+3}=320ig
Multiply 320 and i to get 320i.
320ig=f\times 24^{x+1}+2^{x+3}
Swap sides so that all variable terms are on the left hand side.
\frac{320ig}{320i}=\frac{24f\times 24^{x}+8\times 2^{x}}{320i}
Divide both sides by 320i.
g=\frac{24f\times 24^{x}+8\times 2^{x}}{320i}
Dividing by 320i undoes the multiplication by 320i.
g=\frac{-3if\times 24^{x}-i\times 2^{x}}{40}
Divide 24\times 24^{x}f+8\times 2^{x} by 320i.