Solve for d
d=2-\frac{e}{y}
y\neq 0
Solve for y
y=\frac{e}{2-d}
d\neq 2
Graph
Share
Copied to clipboard
\left(-d+2\right)y=e
Combine d and -2d to get -d.
-dy+2y=e
Use the distributive property to multiply -d+2 by y.
-dy=e-2y
Subtract 2y from both sides.
\left(-y\right)d=e-2y
The equation is in standard form.
\frac{\left(-y\right)d}{-y}=\frac{e-2y}{-y}
Divide both sides by -y.
d=\frac{e-2y}{-y}
Dividing by -y undoes the multiplication by -y.
d=2-\frac{e}{y}
Divide e-2y by -y.
\left(-d+2\right)y=e
Combine d and -2d to get -d.
\left(2-d\right)y=e
The equation is in standard form.
\frac{\left(2-d\right)y}{2-d}=\frac{e}{2-d}
Divide both sides by -d+2.
y=\frac{e}{2-d}
Dividing by -d+2 undoes the multiplication by -d+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}