Evaluate
\sqrt{d}-\sqrt{z}
Differentiate w.r.t. d
\frac{1}{2\sqrt{d}}
Share
Copied to clipboard
\left(d^{\frac{1}{4}}d^{\frac{1}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}+z^{\frac{1}{4}}d^{\frac{1}{8}}+z^{\frac{1}{4}}z^{\frac{1}{8}}\right)\left(d^{\frac{1}{8}}-z^{\frac{1}{8}}\right)
Use the distributive property to multiply d^{\frac{1}{4}}+z^{\frac{1}{4}} by d^{\frac{1}{8}}+z^{\frac{1}{8}}.
\left(d^{\frac{3}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}+z^{\frac{1}{4}}d^{\frac{1}{8}}+z^{\frac{1}{4}}z^{\frac{1}{8}}\right)\left(d^{\frac{1}{8}}-z^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
\left(d^{\frac{3}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}+z^{\frac{1}{4}}d^{\frac{1}{8}}+z^{\frac{3}{8}}\right)\left(d^{\frac{1}{8}}-z^{\frac{1}{8}}\right)
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
d^{\frac{3}{8}}d^{\frac{1}{8}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}d^{\frac{1}{8}}-d^{\frac{1}{4}}\left(z^{\frac{1}{8}}\right)^{2}+z^{\frac{1}{4}}\left(d^{\frac{1}{8}}\right)^{2}-z^{\frac{1}{4}}d^{\frac{1}{8}}z^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
Use the distributive property to multiply d^{\frac{3}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}+z^{\frac{1}{4}}d^{\frac{1}{8}}+z^{\frac{3}{8}} by d^{\frac{1}{8}}-z^{\frac{1}{8}}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{1}{4}}z^{\frac{1}{8}}d^{\frac{1}{8}}-d^{\frac{1}{4}}\left(z^{\frac{1}{8}}\right)^{2}+z^{\frac{1}{4}}\left(d^{\frac{1}{8}}\right)^{2}-z^{\frac{1}{4}}d^{\frac{1}{8}}z^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{3}{8}}z^{\frac{1}{8}}-d^{\frac{1}{4}}\left(z^{\frac{1}{8}}\right)^{2}+z^{\frac{1}{4}}\left(d^{\frac{1}{8}}\right)^{2}-z^{\frac{1}{4}}d^{\frac{1}{8}}z^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{3}{8}}z^{\frac{1}{8}}-d^{\frac{1}{4}}z^{\frac{1}{4}}+z^{\frac{1}{4}}\left(d^{\frac{1}{8}}\right)^{2}-z^{\frac{1}{4}}d^{\frac{1}{8}}z^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{3}{8}}z^{\frac{1}{8}}-d^{\frac{1}{4}}z^{\frac{1}{4}}+z^{\frac{1}{4}}d^{\frac{1}{4}}-z^{\frac{1}{4}}d^{\frac{1}{8}}z^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{3}{8}}z^{\frac{1}{8}}-d^{\frac{1}{4}}z^{\frac{1}{4}}+z^{\frac{1}{4}}d^{\frac{1}{4}}-z^{\frac{3}{8}}d^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{3}{8}}z^{\frac{1}{8}}
To multiply powers of the same base, add their exponents. Add \frac{1}{4} and \frac{1}{8} to get \frac{3}{8}.
d^{\frac{1}{2}}-d^{\frac{3}{8}}z^{\frac{1}{8}}+d^{\frac{3}{8}}z^{\frac{1}{8}}-d^{\frac{1}{4}}z^{\frac{1}{4}}+z^{\frac{1}{4}}d^{\frac{1}{4}}-z^{\frac{3}{8}}d^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add \frac{3}{8} and \frac{1}{8} to get \frac{1}{2}.
d^{\frac{1}{2}}-d^{\frac{1}{4}}z^{\frac{1}{4}}+z^{\frac{1}{4}}d^{\frac{1}{4}}-z^{\frac{3}{8}}d^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{1}{2}}
Combine -d^{\frac{3}{8}}z^{\frac{1}{8}} and d^{\frac{3}{8}}z^{\frac{1}{8}} to get 0.
d^{\frac{1}{2}}-z^{\frac{3}{8}}d^{\frac{1}{8}}+z^{\frac{3}{8}}d^{\frac{1}{8}}-z^{\frac{1}{2}}
Combine -d^{\frac{1}{4}}z^{\frac{1}{4}} and z^{\frac{1}{4}}d^{\frac{1}{4}} to get 0.
d^{\frac{1}{2}}-z^{\frac{1}{2}}
Combine -z^{\frac{3}{8}}d^{\frac{1}{8}} and z^{\frac{3}{8}}d^{\frac{1}{8}} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}