Solve for c (complex solution)
\left\{\begin{matrix}\\c=\frac{32}{27}\approx 1.185185185\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&c=\frac{32}{27}\end{matrix}\right.
Solve for c
\left\{\begin{matrix}\\c=\frac{32}{27}\approx 1.185185185\text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&c=\frac{32}{27}\end{matrix}\right.
Graph
Share
Copied to clipboard
c\times \frac{3}{4}x^{2}=\frac{1}{18}x^{2}+\frac{5}{6}x^{2}
Add \frac{5}{6}x^{2} to both sides.
c\times \frac{3}{4}x^{2}=\frac{8}{9}x^{2}
Combine \frac{1}{18}x^{2} and \frac{5}{6}x^{2} to get \frac{8}{9}x^{2}.
\frac{3x^{2}}{4}c=\frac{8x^{2}}{9}
The equation is in standard form.
\frac{4\times \frac{3x^{2}}{4}c}{3x^{2}}=\frac{8x^{2}}{9\times \frac{3x^{2}}{4}}
Divide both sides by \frac{3}{4}x^{2}.
c=\frac{8x^{2}}{9\times \frac{3x^{2}}{4}}
Dividing by \frac{3}{4}x^{2} undoes the multiplication by \frac{3}{4}x^{2}.
c=\frac{32}{27}
Divide \frac{8x^{2}}{9} by \frac{3}{4}x^{2}.
c\times \frac{3}{4}x^{2}-\frac{5}{6}x^{2}-\frac{1}{18}x^{2}=0
Subtract \frac{1}{18}x^{2} from both sides.
c\times \frac{3}{4}x^{2}-\frac{8}{9}x^{2}=0
Combine -\frac{5}{6}x^{2} and -\frac{1}{18}x^{2} to get -\frac{8}{9}x^{2}.
\left(c\times \frac{3}{4}-\frac{8}{9}\right)x^{2}=0
Combine all terms containing x.
x^{2}=\frac{0}{\frac{3c}{4}-\frac{8}{9}}
Dividing by \frac{3}{4}c-\frac{8}{9} undoes the multiplication by \frac{3}{4}c-\frac{8}{9}.
x^{2}=0
Divide 0 by \frac{3}{4}c-\frac{8}{9}.
x=0 x=0
Take the square root of both sides of the equation.
x=0
The equation is now solved. Solutions are the same.
c\times \frac{3}{4}x^{2}-\frac{5}{6}x^{2}-\frac{1}{18}x^{2}=0
Subtract \frac{1}{18}x^{2} from both sides.
c\times \frac{3}{4}x^{2}-\frac{8}{9}x^{2}=0
Combine -\frac{5}{6}x^{2} and -\frac{1}{18}x^{2} to get -\frac{8}{9}x^{2}.
\left(c\times \frac{3}{4}-\frac{8}{9}\right)x^{2}=0
Combine all terms containing x.
\left(\frac{3c}{4}-\frac{8}{9}\right)x^{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}}}{2\left(\frac{3c}{4}-\frac{8}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4}c-\frac{8}{9} for a, 0 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2\left(\frac{3c}{4}-\frac{8}{9}\right)}
Take the square root of 0^{2}.
x=\frac{0}{\frac{3c}{2}-\frac{16}{9}}
Multiply 2 times \frac{3}{4}c-\frac{8}{9}.
x=0
Divide 0 by \frac{3c}{2}-\frac{16}{9}.
c\times \frac{3}{4}x^{2}=\frac{1}{18}x^{2}+\frac{5}{6}x^{2}
Add \frac{5}{6}x^{2} to both sides.
c\times \frac{3}{4}x^{2}=\frac{8}{9}x^{2}
Combine \frac{1}{18}x^{2} and \frac{5}{6}x^{2} to get \frac{8}{9}x^{2}.
\frac{3x^{2}}{4}c=\frac{8x^{2}}{9}
The equation is in standard form.
\frac{4\times \frac{3x^{2}}{4}c}{3x^{2}}=\frac{8x^{2}}{9\times \frac{3x^{2}}{4}}
Divide both sides by \frac{3}{4}x^{2}.
c=\frac{8x^{2}}{9\times \frac{3x^{2}}{4}}
Dividing by \frac{3}{4}x^{2} undoes the multiplication by \frac{3}{4}x^{2}.
c=\frac{32}{27}
Divide \frac{8x^{2}}{9} by \frac{3}{4}x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}