Skip to main content
Differentiate w.r.t. c
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}c}(\left(c^{\frac{2}{3}}\right)^{2}+6c^{\frac{2}{3}}c^{\frac{1}{6}}+9\left(c^{\frac{1}{6}}\right)^{2}-3c^{\frac{1}{12}}\left(3c^{\frac{1}{4}}+2c^{\frac{3}{4}}\right))
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c^{\frac{2}{3}}+3c^{\frac{1}{6}}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}}+6c^{\frac{2}{3}}c^{\frac{1}{6}}+9\left(c^{\frac{1}{6}}\right)^{2}-3c^{\frac{1}{12}}\left(3c^{\frac{1}{4}}+2c^{\frac{3}{4}}\right))
To raise a power to another power, multiply the exponents. Multiply \frac{2}{3} and 2 to get \frac{4}{3}.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}}+6c^{\frac{5}{6}}+9\left(c^{\frac{1}{6}}\right)^{2}-3c^{\frac{1}{12}}\left(3c^{\frac{1}{4}}+2c^{\frac{3}{4}}\right))
To multiply powers of the same base, add their exponents. Add \frac{2}{3} and \frac{1}{6} to get \frac{5}{6}.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}}+6c^{\frac{5}{6}}+9c^{\frac{1}{3}}-3c^{\frac{1}{12}}\left(3c^{\frac{1}{4}}+2c^{\frac{3}{4}}\right))
To raise a power to another power, multiply the exponents. Multiply \frac{1}{6} and 2 to get \frac{1}{3}.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}}+6c^{\frac{5}{6}}+9c^{\frac{1}{3}}-9c^{\frac{1}{3}}-6c^{\frac{5}{6}})
Use the distributive property to multiply -3c^{\frac{1}{12}} by 3c^{\frac{1}{4}}+2c^{\frac{3}{4}}.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}}+6c^{\frac{5}{6}}-6c^{\frac{5}{6}})
Combine 9c^{\frac{1}{3}} and -9c^{\frac{1}{3}} to get 0.
\frac{\mathrm{d}}{\mathrm{d}c}(c^{\frac{4}{3}})
Combine 6c^{\frac{5}{6}} and -6c^{\frac{5}{6}} to get 0.
\frac{4}{3}c^{\frac{4}{3}-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{4}{3}\sqrt[3]{c}
Subtract 1 from \frac{4}{3}.