Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

c^{2}+14c+49-4\left(1+7\right)+3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+7\right)^{2}.
c^{2}+14c+49-4\times 8+3=0
Add 1 and 7 to get 8.
c^{2}+14c+49-32+3=0
Multiply 4 and 8 to get 32.
c^{2}+14c+17+3=0
Subtract 32 from 49 to get 17.
c^{2}+14c+20=0
Add 17 and 3 to get 20.
c=\frac{-14±\sqrt{14^{2}-4\times 20}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 14 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-14±\sqrt{196-4\times 20}}{2}
Square 14.
c=\frac{-14±\sqrt{196-80}}{2}
Multiply -4 times 20.
c=\frac{-14±\sqrt{116}}{2}
Add 196 to -80.
c=\frac{-14±2\sqrt{29}}{2}
Take the square root of 116.
c=\frac{2\sqrt{29}-14}{2}
Now solve the equation c=\frac{-14±2\sqrt{29}}{2} when ± is plus. Add -14 to 2\sqrt{29}.
c=\sqrt{29}-7
Divide -14+2\sqrt{29} by 2.
c=\frac{-2\sqrt{29}-14}{2}
Now solve the equation c=\frac{-14±2\sqrt{29}}{2} when ± is minus. Subtract 2\sqrt{29} from -14.
c=-\sqrt{29}-7
Divide -14-2\sqrt{29} by 2.
c=\sqrt{29}-7 c=-\sqrt{29}-7
The equation is now solved.
c^{2}+14c+49-4\left(1+7\right)+3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+7\right)^{2}.
c^{2}+14c+49-4\times 8+3=0
Add 1 and 7 to get 8.
c^{2}+14c+49-32+3=0
Multiply 4 and 8 to get 32.
c^{2}+14c+17+3=0
Subtract 32 from 49 to get 17.
c^{2}+14c+20=0
Add 17 and 3 to get 20.
c^{2}+14c=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
c^{2}+14c+7^{2}=-20+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+14c+49=-20+49
Square 7.
c^{2}+14c+49=29
Add -20 to 49.
\left(c+7\right)^{2}=29
Factor c^{2}+14c+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+7\right)^{2}}=\sqrt{29}
Take the square root of both sides of the equation.
c+7=\sqrt{29} c+7=-\sqrt{29}
Simplify.
c=\sqrt{29}-7 c=-\sqrt{29}-7
Subtract 7 from both sides of the equation.