Solve for c
c=0
c=-24
Share
Copied to clipboard
c^{2}+24c+144=144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+12\right)^{2}.
c^{2}+24c+144-144=0
Subtract 144 from both sides.
c^{2}+24c=0
Subtract 144 from 144 to get 0.
c\left(c+24\right)=0
Factor out c.
c=0 c=-24
To find equation solutions, solve c=0 and c+24=0.
c^{2}+24c+144=144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(c+12\right)^{2}.
c^{2}+24c+144-144=0
Subtract 144 from both sides.
c^{2}+24c=0
Subtract 144 from 144 to get 0.
c=\frac{-24±\sqrt{24^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 24 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-24±24}{2}
Take the square root of 24^{2}.
c=\frac{0}{2}
Now solve the equation c=\frac{-24±24}{2} when ± is plus. Add -24 to 24.
c=0
Divide 0 by 2.
c=-\frac{48}{2}
Now solve the equation c=\frac{-24±24}{2} when ± is minus. Subtract 24 from -24.
c=-24
Divide -48 by 2.
c=0 c=-24
The equation is now solved.
\sqrt{\left(c+12\right)^{2}}=\sqrt{144}
Take the square root of both sides of the equation.
c+12=12 c+12=-12
Simplify.
c=0 c=-24
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}