Solve for b
b=-\frac{\left(x-3\right)\left(2x+3\right)}{3-2x}
x\neq \frac{3}{2}
Solve for x
x=\frac{\sqrt{4b^{2}-12b+81}}{4}+\frac{b}{2}+\frac{3}{4}
x=-\frac{\sqrt{4b^{2}-12b+81}}{4}+\frac{b}{2}+\frac{3}{4}
Graph
Share
Copied to clipboard
\left(3b-2bx-3x+2x^{2}\right)\times \frac{1}{2}=\frac{9}{2}
Use the distributive property to multiply b-x by 3-2x.
\frac{3}{2}b-bx-\frac{3}{2}x+x^{2}=\frac{9}{2}
Use the distributive property to multiply 3b-2bx-3x+2x^{2} by \frac{1}{2}.
\frac{3}{2}b-bx+x^{2}=\frac{9}{2}+\frac{3}{2}x
Add \frac{3}{2}x to both sides.
\frac{3}{2}b-bx=\frac{9}{2}+\frac{3}{2}x-x^{2}
Subtract x^{2} from both sides.
\left(\frac{3}{2}-x\right)b=\frac{9}{2}+\frac{3}{2}x-x^{2}
Combine all terms containing b.
\left(\frac{3}{2}-x\right)b=-x^{2}+\frac{3x}{2}+\frac{9}{2}
The equation is in standard form.
\frac{\left(\frac{3}{2}-x\right)b}{\frac{3}{2}-x}=\frac{-x^{2}+\frac{3x}{2}+\frac{9}{2}}{\frac{3}{2}-x}
Divide both sides by \frac{3}{2}-x.
b=\frac{-x^{2}+\frac{3x}{2}+\frac{9}{2}}{\frac{3}{2}-x}
Dividing by \frac{3}{2}-x undoes the multiplication by \frac{3}{2}-x.
b=\frac{\left(3-x\right)\left(2x+3\right)}{3-2x}
Divide \frac{9}{2}+\frac{3x}{2}-x^{2} by \frac{3}{2}-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}