Solve for b
b=10
b=0
Quiz
Polynomial
5 problems similar to:
( b + 4 ) ^ { 2 } = b ^ { 2 } + ( b - 4 ) ^ { 2 } + b ( b - 4 )
Share
Copied to clipboard
b^{2}+8b+16=b^{2}+\left(b-4\right)^{2}+b\left(b-4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(b+4\right)^{2}.
b^{2}+8b+16=b^{2}+b^{2}-8b+16+b\left(b-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(b-4\right)^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b\left(b-4\right)
Combine b^{2} and b^{2} to get 2b^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b^{2}-4b
Use the distributive property to multiply b by b-4.
b^{2}+8b+16=3b^{2}-8b+16-4b
Combine 2b^{2} and b^{2} to get 3b^{2}.
b^{2}+8b+16=3b^{2}-12b+16
Combine -8b and -4b to get -12b.
b^{2}+8b+16-3b^{2}=-12b+16
Subtract 3b^{2} from both sides.
-2b^{2}+8b+16=-12b+16
Combine b^{2} and -3b^{2} to get -2b^{2}.
-2b^{2}+8b+16+12b=16
Add 12b to both sides.
-2b^{2}+20b+16=16
Combine 8b and 12b to get 20b.
-2b^{2}+20b+16-16=0
Subtract 16 from both sides.
-2b^{2}+20b=0
Subtract 16 from 16 to get 0.
b\left(-2b+20\right)=0
Factor out b.
b=0 b=10
To find equation solutions, solve b=0 and -2b+20=0.
b^{2}+8b+16=b^{2}+\left(b-4\right)^{2}+b\left(b-4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(b+4\right)^{2}.
b^{2}+8b+16=b^{2}+b^{2}-8b+16+b\left(b-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(b-4\right)^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b\left(b-4\right)
Combine b^{2} and b^{2} to get 2b^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b^{2}-4b
Use the distributive property to multiply b by b-4.
b^{2}+8b+16=3b^{2}-8b+16-4b
Combine 2b^{2} and b^{2} to get 3b^{2}.
b^{2}+8b+16=3b^{2}-12b+16
Combine -8b and -4b to get -12b.
b^{2}+8b+16-3b^{2}=-12b+16
Subtract 3b^{2} from both sides.
-2b^{2}+8b+16=-12b+16
Combine b^{2} and -3b^{2} to get -2b^{2}.
-2b^{2}+8b+16+12b=16
Add 12b to both sides.
-2b^{2}+20b+16=16
Combine 8b and 12b to get 20b.
-2b^{2}+20b+16-16=0
Subtract 16 from both sides.
-2b^{2}+20b=0
Subtract 16 from 16 to get 0.
b=\frac{-20±\sqrt{20^{2}}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 20 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-20±20}{2\left(-2\right)}
Take the square root of 20^{2}.
b=\frac{-20±20}{-4}
Multiply 2 times -2.
b=\frac{0}{-4}
Now solve the equation b=\frac{-20±20}{-4} when ± is plus. Add -20 to 20.
b=0
Divide 0 by -4.
b=-\frac{40}{-4}
Now solve the equation b=\frac{-20±20}{-4} when ± is minus. Subtract 20 from -20.
b=10
Divide -40 by -4.
b=0 b=10
The equation is now solved.
b^{2}+8b+16=b^{2}+\left(b-4\right)^{2}+b\left(b-4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(b+4\right)^{2}.
b^{2}+8b+16=b^{2}+b^{2}-8b+16+b\left(b-4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(b-4\right)^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b\left(b-4\right)
Combine b^{2} and b^{2} to get 2b^{2}.
b^{2}+8b+16=2b^{2}-8b+16+b^{2}-4b
Use the distributive property to multiply b by b-4.
b^{2}+8b+16=3b^{2}-8b+16-4b
Combine 2b^{2} and b^{2} to get 3b^{2}.
b^{2}+8b+16=3b^{2}-12b+16
Combine -8b and -4b to get -12b.
b^{2}+8b+16-3b^{2}=-12b+16
Subtract 3b^{2} from both sides.
-2b^{2}+8b+16=-12b+16
Combine b^{2} and -3b^{2} to get -2b^{2}.
-2b^{2}+8b+16+12b=16
Add 12b to both sides.
-2b^{2}+20b+16=16
Combine 8b and 12b to get 20b.
-2b^{2}+20b=16-16
Subtract 16 from both sides.
-2b^{2}+20b=0
Subtract 16 from 16 to get 0.
\frac{-2b^{2}+20b}{-2}=\frac{0}{-2}
Divide both sides by -2.
b^{2}+\frac{20}{-2}b=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
b^{2}-10b=\frac{0}{-2}
Divide 20 by -2.
b^{2}-10b=0
Divide 0 by -2.
b^{2}-10b+\left(-5\right)^{2}=\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-10b+25=25
Square -5.
\left(b-5\right)^{2}=25
Factor b^{2}-10b+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-5\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
b-5=5 b-5=-5
Simplify.
b=10 b=0
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}