Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b+4-b^{2}=-11
Subtract b^{2} from both sides.
b+4-b^{2}+11=0
Add 11 to both sides.
b+15-b^{2}=0
Add 4 and 11 to get 15.
-b^{2}+b+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square 1.
b=\frac{-1±\sqrt{1+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-1±\sqrt{1+60}}{2\left(-1\right)}
Multiply 4 times 15.
b=\frac{-1±\sqrt{61}}{2\left(-1\right)}
Add 1 to 60.
b=\frac{-1±\sqrt{61}}{-2}
Multiply 2 times -1.
b=\frac{\sqrt{61}-1}{-2}
Now solve the equation b=\frac{-1±\sqrt{61}}{-2} when ± is plus. Add -1 to \sqrt{61}.
b=\frac{1-\sqrt{61}}{2}
Divide -1+\sqrt{61} by -2.
b=\frac{-\sqrt{61}-1}{-2}
Now solve the equation b=\frac{-1±\sqrt{61}}{-2} when ± is minus. Subtract \sqrt{61} from -1.
b=\frac{\sqrt{61}+1}{2}
Divide -1-\sqrt{61} by -2.
b=\frac{1-\sqrt{61}}{2} b=\frac{\sqrt{61}+1}{2}
The equation is now solved.
b+4-b^{2}=-11
Subtract b^{2} from both sides.
b-b^{2}=-11-4
Subtract 4 from both sides.
b-b^{2}=-15
Subtract 4 from -11 to get -15.
-b^{2}+b=-15
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-b^{2}+b}{-1}=-\frac{15}{-1}
Divide both sides by -1.
b^{2}+\frac{1}{-1}b=-\frac{15}{-1}
Dividing by -1 undoes the multiplication by -1.
b^{2}-b=-\frac{15}{-1}
Divide 1 by -1.
b^{2}-b=15
Divide -15 by -1.
b^{2}-b+\left(-\frac{1}{2}\right)^{2}=15+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-b+\frac{1}{4}=15+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}-b+\frac{1}{4}=\frac{61}{4}
Add 15 to \frac{1}{4}.
\left(b-\frac{1}{2}\right)^{2}=\frac{61}{4}
Factor b^{2}-b+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{1}{2}\right)^{2}}=\sqrt{\frac{61}{4}}
Take the square root of both sides of the equation.
b-\frac{1}{2}=\frac{\sqrt{61}}{2} b-\frac{1}{2}=-\frac{\sqrt{61}}{2}
Simplify.
b=\frac{\sqrt{61}+1}{2} b=\frac{1-\sqrt{61}}{2}
Add \frac{1}{2} to both sides of the equation.