Solve for a
a=\frac{n+1}{n\left(n+2\right)}
n\neq -2\text{ and }n\neq 0
Solve for n
\left\{\begin{matrix}n=\frac{\sqrt{4a^{2}+1}-2a+1}{2a}\text{; }n=\frac{-\sqrt{4a^{2}+1}-2a+1}{2a}\text{, }&a\neq 0\\n=-1\text{, }&a=0\end{matrix}\right.
Share
Copied to clipboard
an\left(n+2\right)=n+1
Multiply both sides of the equation by n+2.
an^{2}+2an=n+1
Use the distributive property to multiply an by n+2.
\left(n^{2}+2n\right)a=n+1
Combine all terms containing a.
\frac{\left(n^{2}+2n\right)a}{n^{2}+2n}=\frac{n+1}{n^{2}+2n}
Divide both sides by n^{2}+2n.
a=\frac{n+1}{n^{2}+2n}
Dividing by n^{2}+2n undoes the multiplication by n^{2}+2n.
a=\frac{n+1}{n\left(n+2\right)}
Divide n+1 by n^{2}+2n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}