Solve for x
\left\{\begin{matrix}x\in \left(a,\frac{1}{a}\right)\text{, }&a<-1\text{ or }\left(a>0\text{ and }a<1\right)\\x\in \left(\frac{1}{a},a\right)\text{, }&a>1\text{ or }\left(a>-1\text{ and }a<0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a>x\text{, }&x\geq 1\\a>\frac{1}{x}\text{, }&x>0\text{ and }x<1\\a\in \left(\frac{1}{x},0\right)\text{, }&x<-1\\a\in \left(x,0\right)\text{, }&x\geq -1\text{ and }x<0\\a\in \left(0,\frac{1}{x}\right)\text{, }&x>1\\a\in \left(0,x\right)\text{, }&x>0\text{ and }x\leq 1\\a<x\text{, }&x\leq -1\\a<\frac{1}{x}\text{, }&x>-1\text{ and }x<0\end{matrix}\right.
Graph
Share
Copied to clipboard
a-x<0 x-\frac{1}{a}<0
For the product to be positive, a-x and x-\frac{1}{a} have to be both negative or both positive. Consider the case when a-x and x-\frac{1}{a} are both negative.
x\in \left(a,\frac{1}{a}\right)\text{, }a<-1\text{ or }\left(a>0\text{ and }a<1\right)
The solution satisfying both inequalities is x\in \left(a,\frac{1}{a}\right)\text{, }a<-1\text{ or }\left(a>0\text{ and }a<1\right).
x-\frac{1}{a}>0 a-x>0
Consider the case when a-x and x-\frac{1}{a} are both positive.
x\in \left(\frac{1}{a},a\right)\text{, }a>1\text{ or }\left(a>-1\text{ and }a<0\right)
The solution satisfying both inequalities is x\in \left(\frac{1}{a},a\right)\text{, }a>1\text{ or }\left(a>-1\text{ and }a<0\right).
\left\{\begin{matrix}x\in \left(a,\frac{1}{a}\right)\text{, }&a<-1\text{ or }\left(a>0\text{ and }a<1\right)\\x\in \left(\frac{1}{a},a\right)\text{, }&a>1\text{ or }\left(a>-1\text{ and }a<0\right)\end{matrix}\right.
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}