Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
ax^{2}+bx-cx+c-a=bx^{2}
Add bx^{2} to both sides. Anything plus zero gives itself.
ax^{2}-cx+c-a=bx^{2}-bx
Subtract bx from both sides.
ax^{2}+c-a=bx^{2}-bx+cx
Add cx to both sides.
ax^{2}-a=bx^{2}-bx+cx-c
Subtract c from both sides.
\left(x^{2}-1\right)a=bx^{2}-bx+cx-c
Combine all terms containing a.
\left(x^{2}-1\right)a=bx^{2}+cx-bx-c
The equation is in standard form.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=\frac{bx+c}{x+1}
Divide \left(-1+x\right)\left(bx+c\right) by x^{2}-1.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
-bx^{2}+bx-cx+c-a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-bx^{2}+bx+c-a=-ax^{2}+cx
Add cx to both sides.
-bx^{2}+bx-a=-ax^{2}+cx-c
Subtract c from both sides.
-bx^{2}+bx=-ax^{2}+cx-c+a
Add a to both sides.
-bx^{2}+bx=-ax^{2}+cx+a-c
Reorder the terms.
\left(-x^{2}+x\right)b=-ax^{2}+cx+a-c
Combine all terms containing b.
\left(x-x^{2}\right)b=-ax^{2}+cx+a-c
The equation is in standard form.
\frac{\left(x-x^{2}\right)b}{x-x^{2}}=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
b=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
b=\frac{ax+a-c}{x}
Divide \left(1-x\right)\left(a+ax-c\right) by -x^{2}+x.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
ax^{2}+bx-cx+c-a=bx^{2}
Add bx^{2} to both sides. Anything plus zero gives itself.
ax^{2}-cx+c-a=bx^{2}-bx
Subtract bx from both sides.
ax^{2}+c-a=bx^{2}-bx+cx
Add cx to both sides.
ax^{2}-a=bx^{2}-bx+cx-c
Subtract c from both sides.
\left(x^{2}-1\right)a=bx^{2}-bx+cx-c
Combine all terms containing a.
\left(x^{2}-1\right)a=bx^{2}+cx-bx-c
The equation is in standard form.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=\frac{bx+c}{x+1}
Divide \left(-1+x\right)\left(bx+c\right) by x^{2}-1.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
-bx^{2}+bx-cx+c-a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-bx^{2}+bx+c-a=-ax^{2}+cx
Add cx to both sides.
-bx^{2}+bx-a=-ax^{2}+cx-c
Subtract c from both sides.
-bx^{2}+bx=-ax^{2}+cx-c+a
Add a to both sides.
-bx^{2}+bx=-ax^{2}+cx+a-c
Reorder the terms.
\left(-x^{2}+x\right)b=-ax^{2}+cx+a-c
Combine all terms containing b.
\left(x-x^{2}\right)b=-ax^{2}+cx+a-c
The equation is in standard form.
\frac{\left(x-x^{2}\right)b}{x-x^{2}}=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
b=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
b=\frac{ax+a-c}{x}
Divide \left(1-x\right)\left(a+ax-c\right) by -x^{2}+x.