Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{bx+c}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=1\text{ or }\left(b=c\text{ and }x=-1\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{ax+a-c}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&x=1\text{ or }\left(a=c\text{ and }x=0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{bx+c}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=1\text{ or }\left(b=c\text{ and }x=-1\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{ax+a-c}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&x=1\text{ or }\left(a=c\text{ and }x=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
ax^{2}+bx-cx+c-a=bx^{2}
Add bx^{2} to both sides. Anything plus zero gives itself.
ax^{2}-cx+c-a=bx^{2}-bx
Subtract bx from both sides.
ax^{2}+c-a=bx^{2}-bx+cx
Add cx to both sides.
ax^{2}-a=bx^{2}-bx+cx-c
Subtract c from both sides.
\left(x^{2}-1\right)a=bx^{2}-bx+cx-c
Combine all terms containing a.
\left(x^{2}-1\right)a=bx^{2}+cx-bx-c
The equation is in standard form.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=\frac{bx+c}{x+1}
Divide \left(-1+x\right)\left(bx+c\right) by x^{2}-1.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
-bx^{2}+bx-cx+c-a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-bx^{2}+bx+c-a=-ax^{2}+cx
Add cx to both sides.
-bx^{2}+bx-a=-ax^{2}+cx-c
Subtract c from both sides.
-bx^{2}+bx=-ax^{2}+cx-c+a
Add a to both sides.
-bx^{2}+bx=-ax^{2}+cx+a-c
Reorder the terms.
\left(-x^{2}+x\right)b=-ax^{2}+cx+a-c
Combine all terms containing b.
\left(x-x^{2}\right)b=-ax^{2}+cx+a-c
The equation is in standard form.
\frac{\left(x-x^{2}\right)b}{x-x^{2}}=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
b=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
b=\frac{ax+a-c}{x}
Divide \left(1-x\right)\left(a+ax-c\right) by -x^{2}+x.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
ax^{2}+bx-cx+c-a=bx^{2}
Add bx^{2} to both sides. Anything plus zero gives itself.
ax^{2}-cx+c-a=bx^{2}-bx
Subtract bx from both sides.
ax^{2}+c-a=bx^{2}-bx+cx
Add cx to both sides.
ax^{2}-a=bx^{2}-bx+cx-c
Subtract c from both sides.
\left(x^{2}-1\right)a=bx^{2}-bx+cx-c
Combine all terms containing a.
\left(x^{2}-1\right)a=bx^{2}+cx-bx-c
The equation is in standard form.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{\left(x-1\right)\left(bx+c\right)}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=\frac{bx+c}{x+1}
Divide \left(-1+x\right)\left(bx+c\right) by x^{2}-1.
ax^{2}-bx^{2}+\left(b-c\right)x+c-a=0
Use the distributive property to multiply a-b by x^{2}.
ax^{2}-bx^{2}+bx-cx+c-a=0
Use the distributive property to multiply b-c by x.
-bx^{2}+bx-cx+c-a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-bx^{2}+bx+c-a=-ax^{2}+cx
Add cx to both sides.
-bx^{2}+bx-a=-ax^{2}+cx-c
Subtract c from both sides.
-bx^{2}+bx=-ax^{2}+cx-c+a
Add a to both sides.
-bx^{2}+bx=-ax^{2}+cx+a-c
Reorder the terms.
\left(-x^{2}+x\right)b=-ax^{2}+cx+a-c
Combine all terms containing b.
\left(x-x^{2}\right)b=-ax^{2}+cx+a-c
The equation is in standard form.
\frac{\left(x-x^{2}\right)b}{x-x^{2}}=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Divide both sides by -x^{2}+x.
b=\frac{\left(1-x\right)\left(ax+a-c\right)}{x-x^{2}}
Dividing by -x^{2}+x undoes the multiplication by -x^{2}+x.
b=\frac{ax+a-c}{x}
Divide \left(1-x\right)\left(a+ax-c\right) by -x^{2}+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}