Solve for a (complex solution)
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
ax-bx=-a+b
Use the distributive property to multiply a-b by x.
ax-bx+a=b
Add a to both sides.
ax+a=b+bx
Add bx to both sides.
\left(x+1\right)a=b+bx
Combine all terms containing a.
\left(x+1\right)a=bx+b
The equation is in standard form.
\frac{\left(x+1\right)a}{x+1}=\frac{bx+b}{x+1}
Divide both sides by 1+x.
a=\frac{bx+b}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
a=b
Divide b+bx by 1+x.
ax-bx=-a+b
Use the distributive property to multiply a-b by x.
ax-bx-b=-a
Subtract b from both sides.
-bx-b=-a-ax
Subtract ax from both sides.
\left(-x-1\right)b=-a-ax
Combine all terms containing b.
\left(-x-1\right)b=-ax-a
The equation is in standard form.
\frac{\left(-x-1\right)b}{-x-1}=-\frac{a\left(x+1\right)}{-x-1}
Divide both sides by -x-1.
b=-\frac{a\left(x+1\right)}{-x-1}
Dividing by -x-1 undoes the multiplication by -x-1.
b=a
Divide -a\left(1+x\right) by -x-1.
ax-bx=-a+b
Use the distributive property to multiply a-b by x.
ax-bx+a=b
Add a to both sides.
ax+a=b+bx
Add bx to both sides.
\left(x+1\right)a=b+bx
Combine all terms containing a.
\left(x+1\right)a=bx+b
The equation is in standard form.
\frac{\left(x+1\right)a}{x+1}=\frac{bx+b}{x+1}
Divide both sides by 1+x.
a=\frac{bx+b}{x+1}
Dividing by 1+x undoes the multiplication by 1+x.
a=b
Divide b+bx by 1+x.
ax-bx=-a+b
Use the distributive property to multiply a-b by x.
ax-bx-b=-a
Subtract b from both sides.
-bx-b=-a-ax
Subtract ax from both sides.
\left(-x-1\right)b=-a-ax
Combine all terms containing b.
\left(-x-1\right)b=-ax-a
The equation is in standard form.
\frac{\left(-x-1\right)b}{-x-1}=-\frac{a\left(x+1\right)}{-x-1}
Divide both sides by -x-1.
b=-\frac{a\left(x+1\right)}{-x-1}
Dividing by -x-1 undoes the multiplication by -x-1.
b=a
Divide -a\left(1+x\right) by -x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}