Solve for a (complex solution)
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=c\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=c\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=b\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=c\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=a\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=c\end{matrix}\right.
Graph
Share
Copied to clipboard
ax-ac-bx+cb-\left(b-c\right)\left(x-a\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply a-b by x-c.
ax-ac-bx+cb-\left(bx-ba-cx+ca\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply b-c by x-a.
ax-ac-bx+cb-bx+ba+cx-ca=\left(c-a\right)\left(x-b\right)
To find the opposite of bx-ba-cx+ca, find the opposite of each term.
ax-ac-2bx+cb+ba+cx-ca=\left(c-a\right)\left(x-b\right)
Combine -bx and -bx to get -2bx.
ax-2ac-2bx+cb+ba+cx=\left(c-a\right)\left(x-b\right)
Combine -ac and -ca to get -2ac.
ax-2ac-2bx+cb+ba+cx=cx-cb-ax+ab
Use the distributive property to multiply c-a by x-b.
ax-2ac-2bx+cb+ba+cx+ax=cx-cb+ab
Add ax to both sides.
2ax-2ac-2bx+cb+ba+cx=cx-cb+ab
Combine ax and ax to get 2ax.
2ax-2ac-2bx+cb+ba+cx-ab=cx-cb
Subtract ab from both sides.
2ax-2ac-2bx+cb+cx=cx-cb
Combine ba and -ab to get 0.
2ax-2ac+cb+cx=cx-cb+2bx
Add 2bx to both sides.
2ax-2ac+cx=cx-cb+2bx-cb
Subtract cb from both sides.
2ax-2ac+cx=cx-2cb+2bx
Combine -cb and -cb to get -2cb.
2ax-2ac=cx-2cb+2bx-cx
Subtract cx from both sides.
2ax-2ac=-2cb+2bx
Combine cx and -cx to get 0.
\left(2x-2c\right)a=-2cb+2bx
Combine all terms containing a.
\left(2x-2c\right)a=2bx-2bc
The equation is in standard form.
\frac{\left(2x-2c\right)a}{2x-2c}=\frac{2b\left(x-c\right)}{2x-2c}
Divide both sides by 2x-2c.
a=\frac{2b\left(x-c\right)}{2x-2c}
Dividing by 2x-2c undoes the multiplication by 2x-2c.
a=b
Divide 2b\left(-c+x\right) by 2x-2c.
ax-ac-bx+cb-\left(b-c\right)\left(x-a\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply a-b by x-c.
ax-ac-bx+cb-\left(bx-ba-cx+ca\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply b-c by x-a.
ax-ac-bx+cb-bx+ba+cx-ca=\left(c-a\right)\left(x-b\right)
To find the opposite of bx-ba-cx+ca, find the opposite of each term.
ax-ac-2bx+cb+ba+cx-ca=\left(c-a\right)\left(x-b\right)
Combine -bx and -bx to get -2bx.
ax-2ac-2bx+cb+ba+cx=\left(c-a\right)\left(x-b\right)
Combine -ac and -ca to get -2ac.
ax-2ac-2bx+cb+ba+cx=cx-cb-ax+ab
Use the distributive property to multiply c-a by x-b.
ax-2ac-2bx+cb+ba+cx+cb=cx-ax+ab
Add cb to both sides.
ax-2ac-2bx+2cb+ba+cx=cx-ax+ab
Combine cb and cb to get 2cb.
ax-2ac-2bx+2cb+ba+cx-ab=cx-ax
Subtract ab from both sides.
ax-2ac-2bx+2cb+cx=cx-ax
Combine ba and -ab to get 0.
-2ac-2bx+2cb+cx=cx-ax-ax
Subtract ax from both sides.
-2ac-2bx+2cb+cx=cx-2ax
Combine -ax and -ax to get -2ax.
-2bx+2cb+cx=cx-2ax+2ac
Add 2ac to both sides.
-2bx+2cb=cx-2ax+2ac-cx
Subtract cx from both sides.
-2bx+2cb=-2ax+2ac
Combine cx and -cx to get 0.
\left(-2x+2c\right)b=-2ax+2ac
Combine all terms containing b.
\left(2c-2x\right)b=2ac-2ax
The equation is in standard form.
\frac{\left(2c-2x\right)b}{2c-2x}=\frac{2a\left(c-x\right)}{2c-2x}
Divide both sides by -2x+2c.
b=\frac{2a\left(c-x\right)}{2c-2x}
Dividing by -2x+2c undoes the multiplication by -2x+2c.
b=a
Divide 2a\left(-x+c\right) by -2x+2c.
ax-ac-bx+cb-\left(b-c\right)\left(x-a\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply a-b by x-c.
ax-ac-bx+cb-\left(bx-ba-cx+ca\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply b-c by x-a.
ax-ac-bx+cb-bx+ba+cx-ca=\left(c-a\right)\left(x-b\right)
To find the opposite of bx-ba-cx+ca, find the opposite of each term.
ax-ac-2bx+cb+ba+cx-ca=\left(c-a\right)\left(x-b\right)
Combine -bx and -bx to get -2bx.
ax-2ac-2bx+cb+ba+cx=\left(c-a\right)\left(x-b\right)
Combine -ac and -ca to get -2ac.
ax-2ac-2bx+cb+ba+cx=cx-cb-ax+ab
Use the distributive property to multiply c-a by x-b.
ax-2ac-2bx+cb+ba+cx+ax=cx-cb+ab
Add ax to both sides.
2ax-2ac-2bx+cb+ba+cx=cx-cb+ab
Combine ax and ax to get 2ax.
2ax-2ac-2bx+cb+ba+cx-ab=cx-cb
Subtract ab from both sides.
2ax-2ac-2bx+cb+cx=cx-cb
Combine ba and -ab to get 0.
2ax-2ac+cb+cx=cx-cb+2bx
Add 2bx to both sides.
2ax-2ac+cx=cx-cb+2bx-cb
Subtract cb from both sides.
2ax-2ac+cx=cx-2cb+2bx
Combine -cb and -cb to get -2cb.
2ax-2ac=cx-2cb+2bx-cx
Subtract cx from both sides.
2ax-2ac=-2cb+2bx
Combine cx and -cx to get 0.
\left(2x-2c\right)a=-2cb+2bx
Combine all terms containing a.
\left(2x-2c\right)a=2bx-2bc
The equation is in standard form.
\frac{\left(2x-2c\right)a}{2x-2c}=\frac{2b\left(x-c\right)}{2x-2c}
Divide both sides by 2x-2c.
a=\frac{2b\left(x-c\right)}{2x-2c}
Dividing by 2x-2c undoes the multiplication by 2x-2c.
a=b
Divide 2b\left(-c+x\right) by 2x-2c.
ax-ac-bx+cb-\left(b-c\right)\left(x-a\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply a-b by x-c.
ax-ac-bx+cb-\left(bx-ba-cx+ca\right)=\left(c-a\right)\left(x-b\right)
Use the distributive property to multiply b-c by x-a.
ax-ac-bx+cb-bx+ba+cx-ca=\left(c-a\right)\left(x-b\right)
To find the opposite of bx-ba-cx+ca, find the opposite of each term.
ax-ac-2bx+cb+ba+cx-ca=\left(c-a\right)\left(x-b\right)
Combine -bx and -bx to get -2bx.
ax-2ac-2bx+cb+ba+cx=\left(c-a\right)\left(x-b\right)
Combine -ac and -ca to get -2ac.
ax-2ac-2bx+cb+ba+cx=cx-cb-ax+ab
Use the distributive property to multiply c-a by x-b.
ax-2ac-2bx+cb+ba+cx+cb=cx-ax+ab
Add cb to both sides.
ax-2ac-2bx+2cb+ba+cx=cx-ax+ab
Combine cb and cb to get 2cb.
ax-2ac-2bx+2cb+ba+cx-ab=cx-ax
Subtract ab from both sides.
ax-2ac-2bx+2cb+cx=cx-ax
Combine ba and -ab to get 0.
-2ac-2bx+2cb+cx=cx-ax-ax
Subtract ax from both sides.
-2ac-2bx+2cb+cx=cx-2ax
Combine -ax and -ax to get -2ax.
-2bx+2cb+cx=cx-2ax+2ac
Add 2ac to both sides.
-2bx+2cb=cx-2ax+2ac-cx
Subtract cx from both sides.
-2bx+2cb=-2ax+2ac
Combine cx and -cx to get 0.
\left(-2x+2c\right)b=-2ax+2ac
Combine all terms containing b.
\left(2c-2x\right)b=2ac-2ax
The equation is in standard form.
\frac{\left(2c-2x\right)b}{2c-2x}=\frac{2a\left(c-x\right)}{2c-2x}
Divide both sides by -2x+2c.
b=\frac{2a\left(c-x\right)}{2c-2x}
Dividing by -2x+2c undoes the multiplication by -2x+2c.
b=a
Divide 2a\left(-x+c\right) by -2x+2c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}