( a - b ) ^ { 2 } , ( c - a ) + ( a - c ) ^ { 2 } \cdot ( a - b )
Least Common Multiple
\left(a-c\right)\left(a-b\right)^{2}\left(1-bc+ac+ab-a^{2}\right)
Evaluate
\left(a-b\right)^{2},\left(a-b\right)\left(a-c\right)^{2}+c-a
Share
Copied to clipboard
c-a+\left(a-c\right)^{2}\left(a-b\right)=\left(-a+c\right)\left(-a^{2}+ab+ac-bc+1\right)
Factor the expressions that are not already factored.
\left(a-c\right)\left(a-b\right)^{2}\left(1-bc+ac+ab-a^{2}\right)
Identify all the factors and their highest power in all expressions. Multiply the highest powers of these factors to get the least common multiple.
-a^{5}+a^{3}+a^{2}b^{3}-3ab^{2}c^{2}+ab^{2}+2abc-2acb^{3}-3b^{2}a^{3}+3ba^{4}+3ba^{2}c^{2}-2ba^{2}-6bca^{3}-c^{2}a^{3}+c^{2}b^{3}+2ca^{4}+6ca^{2}b^{2}-ca^{2}-cb^{2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}