Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{4}-2a^{3}+3a^{2}-2a+1-3\left(a+2\right)^{2}=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Square a-a^{2}-1.
a^{4}-2a^{3}+3a^{2}-2a+1-3\left(a^{2}+4a+4\right)=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{4}-2a^{3}+3a^{2}-2a+1-3a^{2}-12a-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use the distributive property to multiply -3 by a^{2}+4a+4.
a^{4}-2a^{3}-2a+1-12a-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Combine 3a^{2} and -3a^{2} to get 0.
a^{4}-2a^{3}-14a+1-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Combine -2a and -12a to get -14a.
a^{4}-2a^{3}-14a-11=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Subtract 12 from 1 to get -11.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use the distributive property to multiply a^{3} by a-1.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(-a-a^{2}+2+a\right)
Use the distributive property to multiply a+2 by 1-a and combine like terms.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(-a^{2}+2\right)
Combine -a and a to get 0.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}-a^{3}+2a
Use the distributive property to multiply a by -a^{2}+2.
a^{4}-2a^{3}-14a-11=a^{4}-2a^{3}+2a
Combine -a^{3} and -a^{3} to get -2a^{3}.
a^{4}-2a^{3}-14a-11-a^{4}=-2a^{3}+2a
Subtract a^{4} from both sides.
-2a^{3}-14a-11=-2a^{3}+2a
Combine a^{4} and -a^{4} to get 0.
-2a^{3}-14a-11+2a^{3}=2a
Add 2a^{3} to both sides.
-14a-11=2a
Combine -2a^{3} and 2a^{3} to get 0.
-14a-11-2a=0
Subtract 2a from both sides.
-16a-11=0
Combine -14a and -2a to get -16a.
-16a=11
Add 11 to both sides. Anything plus zero gives itself.
a=\frac{11}{-16}
Divide both sides by -16.
a=-\frac{11}{16}
Fraction \frac{11}{-16} can be rewritten as -\frac{11}{16} by extracting the negative sign.