Solve for a
a=-\frac{11}{16}=-0.6875
Share
Copied to clipboard
a^{4}-2a^{3}+3a^{2}-2a+1-3\left(a+2\right)^{2}=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Square a-a^{2}-1.
a^{4}-2a^{3}+3a^{2}-2a+1-3\left(a^{2}+4a+4\right)=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+2\right)^{2}.
a^{4}-2a^{3}+3a^{2}-2a+1-3a^{2}-12a-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use the distributive property to multiply -3 by a^{2}+4a+4.
a^{4}-2a^{3}-2a+1-12a-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Combine 3a^{2} and -3a^{2} to get 0.
a^{4}-2a^{3}-14a+1-12=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Combine -2a and -12a to get -14a.
a^{4}-2a^{3}-14a-11=a^{3}\left(a-1\right)+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Subtract 12 from 1 to get -11.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(\left(a+2\right)\left(1-a\right)+a\right)
Use the distributive property to multiply a^{3} by a-1.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(-a-a^{2}+2+a\right)
Use the distributive property to multiply a+2 by 1-a and combine like terms.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}+a\left(-a^{2}+2\right)
Combine -a and a to get 0.
a^{4}-2a^{3}-14a-11=a^{4}-a^{3}-a^{3}+2a
Use the distributive property to multiply a by -a^{2}+2.
a^{4}-2a^{3}-14a-11=a^{4}-2a^{3}+2a
Combine -a^{3} and -a^{3} to get -2a^{3}.
a^{4}-2a^{3}-14a-11-a^{4}=-2a^{3}+2a
Subtract a^{4} from both sides.
-2a^{3}-14a-11=-2a^{3}+2a
Combine a^{4} and -a^{4} to get 0.
-2a^{3}-14a-11+2a^{3}=2a
Add 2a^{3} to both sides.
-14a-11=2a
Combine -2a^{3} and 2a^{3} to get 0.
-14a-11-2a=0
Subtract 2a from both sides.
-16a-11=0
Combine -14a and -2a to get -16a.
-16a=11
Add 11 to both sides. Anything plus zero gives itself.
a=\frac{11}{-16}
Divide both sides by -16.
a=-\frac{11}{16}
Fraction \frac{11}{-16} can be rewritten as -\frac{11}{16} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}