Solve for a
a=4
a=8
Share
Copied to clipboard
a^{2}-12a+35=3
Use the distributive property to multiply a-7 by a-5 and combine like terms.
a^{2}-12a+35-3=0
Subtract 3 from both sides.
a^{2}-12a+32=0
Subtract 3 from 35 to get 32.
a=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -12 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Square -12.
a=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Multiply -4 times 32.
a=\frac{-\left(-12\right)±\sqrt{16}}{2}
Add 144 to -128.
a=\frac{-\left(-12\right)±4}{2}
Take the square root of 16.
a=\frac{12±4}{2}
The opposite of -12 is 12.
a=\frac{16}{2}
Now solve the equation a=\frac{12±4}{2} when ± is plus. Add 12 to 4.
a=8
Divide 16 by 2.
a=\frac{8}{2}
Now solve the equation a=\frac{12±4}{2} when ± is minus. Subtract 4 from 12.
a=4
Divide 8 by 2.
a=8 a=4
The equation is now solved.
a^{2}-12a+35=3
Use the distributive property to multiply a-7 by a-5 and combine like terms.
a^{2}-12a=3-35
Subtract 35 from both sides.
a^{2}-12a=-32
Subtract 35 from 3 to get -32.
a^{2}-12a+\left(-6\right)^{2}=-32+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-12a+36=-32+36
Square -6.
a^{2}-12a+36=4
Add -32 to 36.
\left(a-6\right)^{2}=4
Factor a^{2}-12a+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-6\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-6=2 a-6=-2
Simplify.
a=8 a=4
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}