Evaluate
-3b\left(3a+7b\right)
Expand
-9ab-21b^{2}
Share
Copied to clipboard
a^{2}+2ab-3ba-6b^{2}-\left(a+5b\right)\left(a+3b\right)
Apply the distributive property by multiplying each term of a-3b by each term of a+2b.
a^{2}-ab-6b^{2}-\left(a+5b\right)\left(a+3b\right)
Combine 2ab and -3ba to get -ab.
a^{2}-ab-6b^{2}-\left(a^{2}+3ab+5ba+15b^{2}\right)
Apply the distributive property by multiplying each term of a+5b by each term of a+3b.
a^{2}-ab-6b^{2}-\left(a^{2}+8ab+15b^{2}\right)
Combine 3ab and 5ba to get 8ab.
a^{2}-ab-6b^{2}-a^{2}-8ab-15b^{2}
To find the opposite of a^{2}+8ab+15b^{2}, find the opposite of each term.
-ab-6b^{2}-8ab-15b^{2}
Combine a^{2} and -a^{2} to get 0.
-9ab-6b^{2}-15b^{2}
Combine -ab and -8ab to get -9ab.
-9ab-21b^{2}
Combine -6b^{2} and -15b^{2} to get -21b^{2}.
a^{2}+2ab-3ba-6b^{2}-\left(a+5b\right)\left(a+3b\right)
Apply the distributive property by multiplying each term of a-3b by each term of a+2b.
a^{2}-ab-6b^{2}-\left(a+5b\right)\left(a+3b\right)
Combine 2ab and -3ba to get -ab.
a^{2}-ab-6b^{2}-\left(a^{2}+3ab+5ba+15b^{2}\right)
Apply the distributive property by multiplying each term of a+5b by each term of a+3b.
a^{2}-ab-6b^{2}-\left(a^{2}+8ab+15b^{2}\right)
Combine 3ab and 5ba to get 8ab.
a^{2}-ab-6b^{2}-a^{2}-8ab-15b^{2}
To find the opposite of a^{2}+8ab+15b^{2}, find the opposite of each term.
-ab-6b^{2}-8ab-15b^{2}
Combine a^{2} and -a^{2} to get 0.
-9ab-6b^{2}-15b^{2}
Combine -ab and -8ab to get -9ab.
-9ab-21b^{2}
Combine -6b^{2} and -15b^{2} to get -21b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}