Solve for a
a = \frac{31}{7} = 4\frac{3}{7} \approx 4.428571429
Share
Copied to clipboard
a^{3}-6a^{2}+12a-8+\left(a-5\right)\left(a+5\right)-a\left(1+a^{2}\right)=-5a^{2}+4a-2
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(a-2\right)^{3}.
a^{3}-6a^{2}+12a-8+a^{2}-25-a\left(1+a^{2}\right)=-5a^{2}+4a-2
Consider \left(a-5\right)\left(a+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
a^{3}-5a^{2}+12a-8-25-a\left(1+a^{2}\right)=-5a^{2}+4a-2
Combine -6a^{2} and a^{2} to get -5a^{2}.
a^{3}-5a^{2}+12a-33-a\left(1+a^{2}\right)=-5a^{2}+4a-2
Subtract 25 from -8 to get -33.
a^{3}-5a^{2}+12a-33-\left(a+a^{3}\right)=-5a^{2}+4a-2
Use the distributive property to multiply a by 1+a^{2}.
a^{3}-5a^{2}+12a-33-a-a^{3}=-5a^{2}+4a-2
To find the opposite of a+a^{3}, find the opposite of each term.
a^{3}-5a^{2}+11a-33-a^{3}=-5a^{2}+4a-2
Combine 12a and -a to get 11a.
-5a^{2}+11a-33=-5a^{2}+4a-2
Combine a^{3} and -a^{3} to get 0.
-5a^{2}+11a-33+5a^{2}=4a-2
Add 5a^{2} to both sides.
11a-33=4a-2
Combine -5a^{2} and 5a^{2} to get 0.
11a-33-4a=-2
Subtract 4a from both sides.
7a-33=-2
Combine 11a and -4a to get 7a.
7a=-2+33
Add 33 to both sides.
7a=31
Add -2 and 33 to get 31.
a=\frac{31}{7}
Divide both sides by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}