Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{2}-24a+144-8\left(16-a\right)>0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-12\right)^{2}.
a^{2}-24a+144-128+8a>0
Use the distributive property to multiply -8 by 16-a.
a^{2}-24a+16+8a>0
Subtract 128 from 144 to get 16.
a^{2}-16a+16>0
Combine -24a and 8a to get -16a.
a^{2}-16a+16=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\times 16}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -16 for b, and 16 for c in the quadratic formula.
a=\frac{16±8\sqrt{3}}{2}
Do the calculations.
a=4\sqrt{3}+8 a=8-4\sqrt{3}
Solve the equation a=\frac{16±8\sqrt{3}}{2} when ± is plus and when ± is minus.
\left(a-\left(4\sqrt{3}+8\right)\right)\left(a-\left(8-4\sqrt{3}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
a-\left(4\sqrt{3}+8\right)<0 a-\left(8-4\sqrt{3}\right)<0
For the product to be positive, a-\left(4\sqrt{3}+8\right) and a-\left(8-4\sqrt{3}\right) have to be both negative or both positive. Consider the case when a-\left(4\sqrt{3}+8\right) and a-\left(8-4\sqrt{3}\right) are both negative.
a<8-4\sqrt{3}
The solution satisfying both inequalities is a<8-4\sqrt{3}.
a-\left(8-4\sqrt{3}\right)>0 a-\left(4\sqrt{3}+8\right)>0
Consider the case when a-\left(4\sqrt{3}+8\right) and a-\left(8-4\sqrt{3}\right) are both positive.
a>4\sqrt{3}+8
The solution satisfying both inequalities is a>4\sqrt{3}+8.
a<8-4\sqrt{3}\text{; }a>4\sqrt{3}+8
The final solution is the union of the obtained solutions.